We investigated the dark current components of thin planar InGaAs photodiodes grown by metalorganic vapor-phase epitaxy for optical nano-resonators. Owing to their high electric field enhancement, nano-resonators make it possible to substantially reduce the thickness of the active region to about 100 nm all the while maintaining high quantum efficiency. In the present study, to cover a broad spectral band, we combined several resonance peaks induced by guided-mode resonances in a given spectral range. This type of geometry allowed us to introduce InAlAs at the edge of a thin InGaAs active region in order to drastically reduce both the diffusion current and the generation/recombination current. We found that, in such devices, tunneling dark current components increase as the thickness of the active layer is reduced and dominate the reverse dark current. By optimizing the epitaxial stack, while keeping its total thickness constant (the optical properties of the nano-resonator remained unchanged), we showed that we are already able to achieve a specific detectivity of up to 1×1013cmHzW1 for λ=1.55μm.

1.
A.
Rogalski
,
Infrared Detectors
(
CRC Press
,
2010
).
2.
M. A.
Kinch
,
State-of-the-Art Infrared Detector Technology
(
SPIE Press
,
2014
).
3.
P.
Martyniuk
,
J.
Antoszewski
,
M.
Martyniuk
,
L.
Faraone
, and
A.
Rogalski
, “
New concepts in infrared photodetector designs
,”
Appl. Phys. Rev.
1
,
041102
(
2014
).
4.
M. P.
Hansen
and
D. S.
Malchow
, “
Overview of swir detectors, cameras, and applications
,”
Proc. SPIE
6939
,
69390I
(
2008
).
5.
S.
Derelle
,
P.
Simoneau
,
J.
Deschamps
,
S.
Rommeluère
,
M.
Hersé
,
G.
Moreels
,
E.
De Borniol
, and
O.
Pacaud
, “
Development of low-flux swir radio-imaging systems to study nightglow emission
,”
Proc. SPIE
8353
,
83533P
(
2012
).
6.
A.
Rogalski
and
R.
Ciupa
, “
Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes
,”
J. Electron. Mater.
28
,
630
636
(
1999
).
7.
M.
MacDougal
,
J.
Geske
,
C.
Wang
,
S.
Liao
,
J.
Getty
, and
A.
Holmes
, “
Low dark current InGaAs detector arrays for night vision and astronomy
,”
Proc. SPIE
7298
,
72983F
(
2009
).
8.
J. A.
Trezza
,
N.
Masaun
, and
M.
Ettenberg
, “
Analytic modeling and explanation of ultra-low noise in dense swir detector arrays
,” in
Proc. SPIE
8012
,
80121Y
(
2011
).
9.
A.
Rouvié
,
J.-L.
Reverchon
,
O.
Huet
,
A.
Djedidi
,
J.-A.
Robo
,
J.-P.
Truffer
,
T.
Bria
,
M.
Pires
,
J.
Decobert
, and
E.
Costard
, “
InGaAs focal plane array developments at iii-v lab
,” in
Proc. SPIE
8353
,
835308
(
2012
).
10.
B.
Sverdlov
,
A.
Botchkarev
,
N.
Teraguchi
,
A.
Salvador
, and
H.
Morkoç
, “
Reduction of dark current in photodiodes by the use of a resonant cavity
,”
Electron. Lett.
29
,
1019
1021
(
1993
).
11.
A.
Dentai
,
R.
Kuchibhotla
,
J. C.
Campbell
,
C.-Y.
Tsai
, and
C.
Lei
, “
High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode
,”
Electron. Lett.
27
,
2125
2127
(
1991
).
12.
I.-H.
Tan
,
E. L.
Hu
,
J.
Bowers
, and
B.
Miller
, “
Modeling and performance of wafer-fused resonant-cavity enhanced photodetectors
,”
IEEE J. Quantum Electron.
31
,
1863
1875
(
1995
).
13.
A.
Salvador
,
B.
Sverdlov
,
T.
Lehner
,
A.
Botchkarev
,
F.
Huang
, and
H.
Morkoc
, “
Resonant cavity enhanced InP/InGaAs photodiode on Si using epitaxial liftoff
,”
Appl. Phys. Lett.
65
,
1880
1882
(
1994
).
14.
M. S.
Ünlü
and
S.
Strite
, “
Resonant cavity enhanced photonic devices
,”
J. Appl. Phys.
78
,
607
639
(
1995
).
15.
P.
Bouchon
,
F.
Pardo
,
R.
Haïdar
, and
J.-L.
Pelouard
, “
Fast modal method for subwavelength gratings based on b-spline formulation
,”
JOSA A
27
,
696
702
(
2010
).
16.
M.
Verdun
,
B.
Portier
,
K.
Jaworowicz
,
J.
Jaeck
,
F.
Lelarge
,
S.
Guilet
,
C.
Dupuis
,
R.
Haïdar
,
F.
Pardo
, and
J.-L.
Pelouard
, “
Guided-mode resonator for thin InGaAs pin short-wave infrared photo-diode
,”
Appl. Phys. Lett.
108
,
053501
(
2016
).
17.
O. K.
Kim
,
B. V.
Dutt
,
R.
McCoy
, and
J. R.
Zuber
, “
A low dark-current, planar InGaAs pin photodiode with a quaternary InGaAsP cap layer
,”
IEEE J. Quantum Electron.
21
,
138
143
(
1985
).
18.
S.
Miura
,
H.
Kuwatsuka
,
T.
Mikawa
, and
O.
Wada
, “
Planar, embedded InP/GaInAs p-i-n photodiode with very high-speed response characteristics
,”
Appl. Phys. Lett.
49
,
1522
1524
(
1986
).
19.
M.
Gallant
,
N.
Puetz
,
A.
Zemel
, and
F.
Shepherd
, “
Metalorganic chemical vapor deposition InGaAs p-i-n photodiodes with extremely low dark current
,”
Appl. Phys. Lett.
52
,
733
735
(
1988
).
20.
S.
Kagawa
,
K.
Inoue
,
I.
Ogawa
,
Y.
Takada
, and
T.
Shibata
, “
Wide-wavelength InGaAs/inp pin photodiodes sensitive from 0.7 to 1.6 μm
,”
Jpn. J. Appl. Phys.
28
,
1843
(
1989
).
21.
A. R.
Wichman
,
R. E.
DeWames
, and
E.
Bellotti
, “
Three-dimensional numerical simulation of planar p + n heterojunction In0.53Ga0.47 as photodiodes in dense arrays part I: Dark current dependence on device geometry
,”
Proc. SPIE
9070
,
907003
(
2014
).
22.
I.
Vurgaftman
,
J.
Meyer
, and
L.
Ram-Mohan
, “
Band parameters for iii–v compound semiconductors and their alloys
,”
J. Appl. Phys.
89
,
5815
5875
(
2001
).
23.
J.
Decobert
and
G.
Patriarche
, “
Transmission electron microscopy study of the inp/InGaAs and InGaAs/inp heterointerfaces grown by metalorganic vapor-phase epitaxy
,”
J. Appl. Phys.
92
,
5749
5755
(
2002
).
24.
C.
Blaauw
,
F.
Shepherd
, and
D.
Eger
, “
Secondary ion mass spectrometry and electrical characterization of Zn diffusion in n-type InP
,”
J. Appl. Phys.
66
,
605
610
(
1989
).
25.
F.
Reier
,
N.
Agrawal
,
P.
Harde
, and
R.
Bochnia
, “
Highly abrupt modulation Zn doping in LP-MOVPE grown InAlAs as applied to quantum well electron transfer structures for optical switching
,” in
Proceedings of the Fifth International Conference on Indium Phosphide and Related Materials
(
IEEE
,
1993
), pp.
703
706
.
26.
H.
Kim
,
J.
Choi
,
H.
Bang
,
Y.
Jee
,
S.
Yun
,
J.
Burm
,
M.
Kim
, and
A.
Choo
, “
Dark current reduction in APD with BCB passivation
,”
Electron. Lett.
37
(
7
),
455
(
2001
).
27.
R.
Trommer
and
H.
Albrecht
, “
Confirmation of tunneling current via traps by dlts measurements in InGaAs photodiodes
,”
Jpn. J. Appl. Phys.
22
,
L364
(
1983
).
28.
E. O.
Kane
, “
Theory of tunneling
,”
J. Appl. Phys.
32
,
83
91
(
1961
).
29.
W.
Loke
,
S.
Yoon
,
S.
Wicaksono
,
K.
Tan
, and
K.
Lew
, “
Defect-induced trap-assisted tunneling current in GaInNAs grown on GaAs substrate
,”
J. Appl. Phys.
102
,
054501
(
2007
).
30.
G.
Hurkx
,
D.
Klaassen
, and
M.
Knuvers
, “
A new recombination model for device simulation including tunneling
,”
IEEE Trans. Electron Devices
39
,
331
338
(
1992
).
31.
W.
Van Roosbroeck
and
W.
Shockley
, “
Photon-radiative recombination of electrons and holes in germanium
,”
Phys. Rev.
94
,
1558
(
1954
).
32.
E.
Zielinski
,
H.
Schweizer
,
K.
Streubel
,
H.
Eisele
, and
G.
Weimann
, “
Excitonic transitions and exciton damping processes in InGaAs/InP
,”
J. Appl. Phys.
59
,
2196
2204
(
1986
).
33.
R.
Humphreys
, “
Radiative lifetime in semiconductors for infrared detection
,”
Infrared Phys.
23
,
171
175
(
1983
).
34.
R.
Humphreys
, “
Radiative lifetime in semiconductors for infrared detection
,”
Infrared Phys.
26
,
337
342
(
1986
).
35.
K.
Jóźwikowski
,
M.
Kopytko
, and
A.
Rogalski
, “
Numerical estimations of carrier generation–recombination processes and the photon recycling effect in HgCdTe heterostructure photodiodes
,”
J. Electron. Mater.
41
,
2766
2774
(
2012
).
You do not currently have access to this content.