The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p+-p-p+ field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2–4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculating the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 105. Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage.

1.
G.
Chen
and
L.
Hu
, “
Silicon nanowires for solar photovoltaic applications
,”
SPIE Newsroom
(
2008
).
2.
T.
Xu
,
Y.
Lambert
,
Ch.
Krzeminski
,
B.
Grandidier
,
D.
Stiévenard
,
G.
Lévêque
,
A.
Akjouj
,
Y.
Pennec
, and
B.
Djafari-Rouhani
, “
Optical absorption of silicon nanowires
,”
J. Appl. Phys.
112
,
033506
(
2012
).
3.
L.
Tsakalakos
,
J.
Balch
,
J.
Fronheiser
,
M.-Y.
Shih
,
S. F.
LeBoeuf
,
M.
Pietrzykowski
,
P. J.
Codella
,
B. A.
Korevaar
,
O.
Sulima
,
J.
Rand
,
A.
Davuluru
, and
U.
Rapolc
, “
Strong broadband optical absorption in silicon nanowire films
,”
J. Nanophotonics
1
,
013552
(
2007
).
4.
E.
Garnett
and
P.
Yang
, “
Light trapping in silicon nanowire solar cells
,”
Nano Lett.
10
,
1082
1087
(
2010
).
5.
V.
Parkash
and
A. K.
Kulkarni
, “
Optical absorption characteristics of silicon nanowires for photovoltaic applications
,”
IEEE Trans. Nanotechnol.
10
(
6
),
1293
1207
(
2011
).
6.
G.
Sanders
and
Y. C.
Chang
, “
Theory of optical properties of quantum wires in porous Si
,”
Phys. Rev. B
45
,
9202
9213
(
1992
).
7.
A.
Miranda
,
R.
Vázquez
,
A.
Díaz-Méndez
, and
M.
Cruz-Irisson
, “
Optical matrix elements in tight-binding approach of hydrogenated Si nanowires
,”
Microelectron. J.
40
(
3
),
456
458
(
2009
).
8.
M.
Bruno
,
M.
Palummo
,
S.
Ossicini
, and
R. D.
Sole
, “
First-principles optical properties of silicon and germanium nanowires
,”
Surf. Sci.
601
(
13
),
2707
2711
(
2007
).
9.
K.
Das
,
S.
Mukherjee
,
S.
Manna
,
S. K.
Ray
, and
A. K.
Raychaudhuri
, “
Single Si nanowire (diameter ≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity
,”
Nanoscale
6
,
11232
11239
(
2014
).
10.
T.
Lin
,
X.
Liu
,
B.
Zhou
,
Z.
Zhan
,
A. N.
Cartwright
, and
M. T.
Swihart
, “
A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink
,”
Adv. Funct. Mater.
24
(
38
),
6016
6022
(
2014
).
11.
Yu.
Dobrovolskyi
,
L.
Pidkamin
,
V.
Brus
, and
V.
Kuzenko
, “
Photodiode based on epitaxial silicon with high sensitivity at the wavelength 254 nm
,”
Semicond. Phys., Quantum Electron. Optoelectron.
17
(
2
),
256
259
(
2014
).
12.
Y.
Cui
,
Q.
Wei
,
H.
Park
, and
C. M.
Lieber
, “
Nanowire nanosensors for highly sensitive and selective detection of biological and chemical specie
,”
Science
293
,
1289
1292
(
2001
).
13.
E.
Stern
,
J. F.
Klemic
,
D. A.
Routenberg
,
P. N.
Wyrembak
,
D. B.
Turner-Evans
,
A. D.
Hamilton
,
D. A.
LaVan
,
T. M.
Fahmy
, and
M. A.
Reed
,
Nature
445
,
519
522
(
2007
).
14.
O.
Knopfmacher
 et al, “
Nernst limit in dual-gated Si-nanowire FET sensors
,”
Nano Lett.
10
,
2268
2274
(
2010
).
15.
A.
Tarasov
, “
Silicon nanowire field-effect transistors for sensing applications
,” PhD thesis (
Basel
,
2012
).
16.
S.
Pud
,
J.
Li
,
V.
Sibiliev
,
M.
Petrychuk
,
V.
Kovalenko
,
A.
Offenhäusser
, and
S.
Vitusevich
, “
Liquid and back gate coupling effect: Toward biosensing with lowest detection limit
,”
Nano Lett.
14
,
578
584
(
2014
).
17.
V. S.
Vavilov
,
Action of Irradiation on the Semiconductors
(
Fizmatgiz
,
Moscow
,
1963
) (in Russian).
18.
E. L.
Wolf
,
Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience
, 2nd ed. (
Wiley-VCH Verlag GmbH &Co. KGaA
,
Weinheim
,
2006
).
19.
J. I.
Pankove
,
Optical Processes in Semiconductors
(
Prentice-Hall
,
New Jersey
,
1971
).
20.
See http://www.labsphere.com/products/spheres-and-components/laser-power-measurement-spheres/detector-assemblies.aspx for information about sensitivity of bulk silicon photodetectors of Labsphere company.
21.
See https://www.solarmeter.com/model57.html for information about sensitivity of “Solarmeter Model 5.7” bulk silicon photodetectors.
22.
See http://www.kyosemi.co.jp/en/sensor/gan_uv_sensor/kpdu37s1_q1 for information about sensitivity of bulk silicon photodetectors of Kyosemi company.
23.
See http://physics.nist.gov/Pubs/TN1421/detector.html for information about sensitivity of bulk silicon photodetectors of NIST Physical Measurement Laboratory.
24.
See http://www.scitec.uk.com/uvphotodiodes/uvphotodiodes/notes/uv_index_measuring for information about sensitivity of bulk silicon photodetectors of Scitec Instruments company.
25.
J.
Wang
,
Z.
Cheng
,
Z.
Chen
,
J.-B.
Xu
,
H.
Ki Tsang
, and
C.
Shu
,
J. Appl. Phys.
117
,
144504
(
2015
).
26.
F. V.
Gasparyan
, “
Noise reduction in (bio-) chemical sensors functionalized with carbon nanotube multilayers
,” in
Advanced Sensors for Safety and Security
, NATO Science for Peace and Security Series B: Physics and Biophysics, edited by
A.
Vaseashta
and
S.
Khudaverdyan
(
Springer
Netherlands
,
2013
), Chap. 11, pp.
139
150
.
27.
S.
Vitusevich
and
F.
Gasparyan
, “
Low-frequency noise spectroscopy at nanoscale: Carbon nanotube materials and devices
,” in
Carbon Nanotubes Applications on Electron Devices
, edited by
J. M.
Marulanda
(
InTech
,
2011
), Chap. 11, pp.
257
296
.
28.
S.
Pud
,
F.
Gasparyan
,
M.
Petrychuk
,
J.
Li
,
A.
Offenhäusser
, and
S.
Vitusevich
, “
Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors
,”
J. Appl. Phys.
115
,
233705(1-11)
(
2014
).
29.
F. V.
Gasparyan
,
A.
Poghossian
,
S. A.
Vitusevich
,
M. V.
Petrychuk
,
V. A.
Sydoruk
,
J. R.
Siqueira
, Jr.
,
O. N.
Oliveira
,
A.
Offenhäusser
, and
M. J.
Schöning
, “
Low-frequency noise in field-effect devices functionalized with dendrimer/carbon- nanotube multilayers
,”
IEEE Sens. J.
11
(
N1
),
142
149
(
2011
).
30.
F.
Gasparyan
, “
Low-frequency noises in nanotubes and nanowires
,”
Arm. J. Phys.
3
(
4
),
312
341
(
2010
).
31.
F. V.
Gasparyan
, “
Excess noises in (bio-)chemical nanoscale sensors
,”
Sens. Transducers J.
122
(
11
),
72
84
(
2010
).
32.
F.
Gasparyan
,
I.
Zadorozhnyi
, and
S.
Vitusevich
, “
Single trap in liquid gated nanowire FETs: Capture time behavior as a function of current
,”
J. Appl. Phys.
117
,
174506
1
(
2015
).
33.
J.-H.
Ahn
,
J.-Y.
Kim
,
M.-L.
Seol
,
D. J.
Baek
,
Z.
Guo
,
Ch.-H.
Kim
,
S.-J.
Choi
, and
Y.-K.
Cho
, “
A pH sensor with a double-gate silicon nanowire field-effect transistor
,”
Appl. Phys. Lett.
102
,
083701
(
2013
).
34.
G.
Ghibaudo
,
O.
Roux
,
C.
Nguyenduc
,
F.
Balestra
, and
J.
Brini
,
Phys. Status Solidi A
124
(
2
),
571
(
1991
).
35.
J.
Zhuge
,
R. S.
Wang
,
R.
Huang
,
Y.
Tian
,
L. L.
Zhang
,
D. W.
Kim
,
D.
Park
, and
Y. Y.
Wang
,
IEEE Electron Device Lett.
30
(
1
),
57
(
2009
).
36.
Y.
Cheng
,
P.
Xiong
,
C. S.
Yun
,
G. F.
Strouse
,
J. P.
Zheng
,
R. S.
Yang
, and
Z. L.
Wang
,
Nano Lett.
8
(
12
),
4179
(
2008
).
37.
Y. M.
Lin
,
J.
Appenzeller
,
J.
Knoch
,
Z. H.
Chen
, and
P.
Avouris
,
Nano Lett.
6
(
5
),
930
(
2006
).
38.
A.
Gao
,
N.
Zou
,
P.
Dai
,
N.
Lu
,
T.
Li
,
Y.
Wang
,
J.
Zhao
, and
H.
Mao
, “
Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification
,”
Nano Lett.
13
(
9
),
4123
4130
(
2013
).
39.
N. K.
Rajan
,
D. A.
Routenberg
, and
M. A.
Reed
, “
Optimal signal-to-noise ratio for silicon nanowire biochemical sensors
,”
Appl. Phys. Lett.
98
,
264107(1
3)
(
2011
).
40.
F.
Gasparyan
,
H.
Khondkaryan
, and
M.
Aleksanyan
, “
New application of the noise spectroscopy for hydrogen sensors
,”
J. Mod. Phys.
5
,
1662
1669
(
2014
).
41.
A.
Sacchetti
, “
Electrical current in nanoelectronic devices
,”
Phys. Lett. A
374
(
10
),
4057
4060
(
2010
).
42.
K. K.
Hung
,
P. K.
Ko
,
P. C.
Hu
, and
Y. C.
Cheng
, “
A unified model for the Flicker noise in metal-oxide-semiconductor field-effect transistors
,”
IEEE Trans. Electron Devices
37
(
3
),
654
665
(
1990
).
43.
H.
Tian
and
A.
El Gamal
, “
Analysis of 1/f noise in switched MOSFET circuits
,”
IEEE Trans. Circuits Systems, II: Analog Digital Signal Process.
48
(
2
),
151
157
(
2001
).
44.
F. V.
Gasparyan
,
H. V.
Asriyan
,
S. V.
Melkonyan
, and
C. E.
Korman
, “
Method of 1/f noise reduction and noise level manipulation in semiconductor based devices
,” U.S. patent application wo2011140541 (7 May
2010
).
45.
J.
Li
,
S.
Pud
,
D.
Mayer
, and
S.
Vitusevich
, “
Advanced fabrication of Si nanowire FET structures by means of a parallel approach
,”
Nanotechnology
25
,
275302
1-7
(
2014
).
46.
D. E.
Presnov
,
S. V.
Amitanov
,
P. A.
Krutitskii
,
V. V.
Kolibasova
,
I. A.
Devyatov
,
V. A.
Krupenin
, and
I. I.
Soloviev
, “
A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator
,”
Beilstein J. Nanotechnol.
4
,
330
335
(
2013
).
47.
K.
Bedner
,
V. A.
Cuzenko
,
A.
Tarasov
,
M.
Wipf
,
R. L.
Stoop
,
D.
Just
,
S.
Rigante
,
W.
Fu
,
R. L. A.
Minamisawa
,
Ch.
David
,
M.
Calame
,
J.
Gobrecht
, and
Ch.
Schönenberger
, “
pH response of silicon nanowire sensors: Impact of nanowire width and gate oxide
,”
Sens. Mater.
25
(
8
),
567
576
(
2013
).
You do not currently have access to this content.