Structural, dielectric, and ferroelectric properties, and electrocaloric effects of pure and Gd doped (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics prepared by the conventional solid-solid method have been carried out. The X-ray diffraction analysis confirms a pure perovskite structure with the coexistence of tetragonal and rhombohedra structures in both powders. The thermal and frequency dependences of the dielectric constants of both ceramics revealed relaxor behavior. The two compounds exhibited two phase transitions: ferroelectric/antiferroelectric (FE/AFE) transition followed by an antiferroelectric/paraelectric (AFE/PE) transition at higher temperatures. Remarkably, we noticed that the small amount of Gd doping (2%) highly enhanced the dielectric properties of the parent compound by about 71%. The phase diagram was as well influenced by the Gd doping, where the FE/AFE transition temperature rose from 90 in the parent compound to 115 °C in the doped one whereas the AFE/PE transition temperature was decreased from 320 to 270 °C, respectively. The direct electrocaloric measurements performed on both compounds showed that the ferroelectric/antiferroelectric phase transition was accompanied by a significant electrocaloric effect. The Gd3+ doping improved the electrocaloric properties of the parent compound, where a remarkable temperature variation of 1.4 K was obtained in the doped ceramic. The results of the direct electrocaloric measurements will be compared and discussed with those derived from the indirect method.

1.
X.
Qing
,
S.
Chen
,
W.
Chen
,
W.
Sujuan
,
J.
Zhou
,
H.
Sun
, and
Y.
Li
, “
Synthesis and piezoelectric and ferroelectric properties of (Na0.5Bi0.5)1-xBaxTiO3 ceramics
,”
Mater. Chem. Phys.
90
,
111
115
(
2005
).
2.
B.
Parija
,
S.
Panigrahi
,
T.
Badapanda
, and
T. P.
Sinha
, “
Morphotropic phase boundary and dielectric relaxation study of (Bi0:5Na0:5)TiO3–BaTiO3 lead free ceramic
,”
J. Adv. Dielectr.
2
,
1250008
(
2012
).
3.
G. A.
Smolensky
,
V. A.
Isupov
,
A. I.
Agranovskaya
, and
S. N.
Popov
, “
Ferroelectrics with diffuse phase transitions
,”
Sov. Phys. Solid State
2
,
2584
(
1961
).
4.
Y. M.
Chiang
,
G. W.
Farrey
, and
A. N.
Soukhojak
, “
Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite family
,”
Appl. Phys. Lett.
73
,
3683
(
1998
).
5.
T.
Takenaka
,
K. I.
Maruyama
, and
K.
Sakata
, “
(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics
,”
Jpn. J. Appl. Phys., Part 1
30
,
2236
(
1991
).
6.
T.
Takenaka
,
H.
Nagata
, and
Y.
Hiruma
, “
Current Developments and Prospective of Lead-Free Piezoelectric Ceramics
,”
Jpn. J. Appl. Phys., Part 1
47
,
3787
(
2008
).
7.
Y.
Guo
,
M.
Gu
,
H.
Luo
,
Y.
Liu
, and
R. L.
Withers
, “
Composition-induced antiferroelectric phase and giant strain in lead-free (Nay,Biz)Ti1−xO3(1−x)−xBaTiO3 ceramics
,”
Phys. Rev. B
83
,
054118
(
2011
).
8.
A.
Herabut
and
A.
Safari
, “
Processing and electromechanical properties of (Bi0.5Na0.5)(1−1.5x)LaxTiO3 ceramics
,”
J. Am. Ceram. Soc.
80
,
2954
(
1997
).
9.
Q.
Xu
,
M.
Chen
,
W.
Chen
,
H. X.
Liu
,
B. H.
Kim
, and
B. K.
Ahn
, “
Effect of Ln2O3(Ln = La, Pr, Eu, Gd) addition on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics
,”
J. Alloys Compd.
463
,
275
281
(
2008
).
10.
M. S.
Yoon
and
H. M.
Jang
, “
Relaxor-normal ferroelectric transition in tetragonal-rich field of Pb(Ni 1/3Nb2/3)03-PbTiO3-PbZr03 system
,”
J. Appl. Phys.
77
,
3991
(
1995
).
11.
K.
Sakata
and
Y.
Masuda
, “
Ferroelectric and antiferroelectric properties of (Bi1/2Na1/2)TiO3–SrTiO3 solid solution ceramics
,”
Ferroelectrics
7
,
347
349
(
1974
).
12.
Ch.
Xu
,
D.
Lina
, and
K. W.
Kwok
, “
Structure, electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics
,”
Solid State Sci.
10
,
934
940
(
2008
).
13.
W. P.
Cao
,
W. L.
Li
,
D.
Xu
,
Y. F.
Hou
,
W.
Wang
, and
W. D.
Fei
, “
Enhanced electrocaloric effect in lead-free NBT-based ceramics
,”
Ceram. Int.
40
,
9273
9278
(
2014
).
14.
Y.
Guo
,
Y.
Liu
,
R. L.
Withers
,
F.
Brink
, and
H.
Chen
, “
Large electric field-induced strain and antiferroelectric behavior in (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 ceramics
,”
Chem. Mater.
23
,
219
228
(
2011
).
15.
Y.
Hiruma
,
H.
Nagata
, and
T.
Takenaka
, “
Phase transition temperatures and piezoelectric properties of(Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics
,”
Jpn. J. Appl. Phys., Part 1
45
,
7409
7412
(
2006
).
16.
Y.
Hiruma
,
H.
Nagata
, and
T.
Takenaka
, “
Phase diagrams and electrical properties of(Bi1/2Na1/2)TiO3-based solid solutions
,”
J. Appl. Phys.
104
,
124106
(
2008
).
17.
W.
Jo
,
S.
Schaab
,
E.
Sapper
,
L. A.
Schmitt
,
H. J.
Kleebe
,
A. J.
Bell
, and
J.
Rödel
, “
On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol. % BaTiO3
,”
J. Appl. Phys.
110
,
074106
(
2011
).
18.
K.
Ramam
and
S. H.
Luis
, “
Effect of Ba on ferroelectric and piezoelectric properties of the PLZT(1.2/55/45)
,”
Physica Status Solidi Syst.
203
,
2119
(
2006
).
19.
J. K.
Lee
,
J. Y.
Yi
, and
K. S.
Hong
, “
Dependence of incommensurate phase formation on vacancy type in La-doped (Na1/2Ba1/2)TiO3
,”
J. Appl. Phys.
96
,
1174
(
2004
).
20.
S.
Uddin
,
G. P.
Zheng
,
Y.
Iqbal
,
R.
Ubic
, and
J.
Yang
, “
Unification of the negative electrocaloric effect in Bi1/2Na1/2TiO3-BaTiO3 solid solutions by Ba1/2Sr1/2TiO3 doping
,”
J. Appl. Phys.
114
,
213519
(
2013
).
21.
W. N.
Lawless
, “
Specific heat and electrocaloric properties of a KTaO3 low at temperatures
,”
Phys. Rev. B
16
,
433
(
1977
).
22.
Y.
Bai
,
G. P.
Zheng
, and
S. Q.
Shi
, “
Kinetic electrocaloric effect and giant net cooling of lead-free ferroelectric refrigerants
,”
J. Appl. Phys.
108
,
104102
(
2010
).
23.
B. L.
Peng
,
H. Q.
Fan
, and
Q.
Zhang
, “
A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature
,”
Adv. Funct. Mater.
23
,
2987
2992
(
2013
).
24.
X.
Hao
and
J.
Zhai
, “
Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase
,”
J. Appl. Phys. Lett.
104
,
022902
(
2014
).
25.
X. C.
Zheng
,
G. P.
Zheng
,
Z.
Lin
, and
Z. Y.
Jiang
, “
Electrocaloric behaviors of BNT-BT ceramics
,”
J. Electroceram.
28
,
20
26
(
2012
).
26.
G.
Sebald
,
S.
Pruvost
,
L.
Seveyrat
,
L.
Lebrun
,
D.
Guyomar
, and
B.
Guiffard
, “
Electrocaloric properties of high dielectric constant ferroelectric ceramics
,”
J. Eur. Ceram. Soc.
27
,
4021
4024
(
2007
).
27.
S. G.
Lu
,
B.
Rožič
,
Q. M.
Zhang
,
Z.
Kutnjak
, and
R.
Pirc
, “
Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric
,”
Appl. Phys. Lett.
97
,
202901
(
2010
).
28.
Y.
Bai
,
G. P.
Zheng
, and
S. Q.
Shi
, “
Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature
,”
Mater. Res. Bull.
46
,
1866
1869
(
2011
).
29.
X. S.
Qian
,
H. J.
Ye
,
Y. T.
Zhang
,
H.
Gu
,
X.
Li
,
C. A.
Randall
, and
Q. M.
Zhang
, “
Giant electrocaloric response over a broad temperature range in modified BaTiO3
,”
Adv. Funct. Mater.
24
,
1300
1305
(
2014
).
30.
D.
Viehland
,
J. F.
Li
,
S. J.
Jang
,
L. E.
Cross
, and
M.
Wuttig
, “
Glassy polarization behavior of relaxor ferroelectrics
,”
Phys. Rev. B
46
,
8013
(
1992
).
You do not currently have access to this content.