Polycrystalline lanthanum lead zirconate titanate (PLZT) thin films were deposited on Pt/TiO2/SiO2/Si substrates to study the effects of the thickness and grain size on their structural and piezoresponse properties at nanoscale. Thinner PLZT films show a slight (100)-orientation tendency that tends to random orientation for the thicker film, while microstrain and crystallite size increases almost linearly with increasing thickness. Piezoresponse force microscopy and autocorrelation function technique were used to demonstrate the existence of local self-polarization effect and to study the thickness dependence of correlation length. The obtained results ruled out the bulk mechanisms and suggest that Schottky barriers near the film-substrate are likely responsible for a build-in electric field in the films. Larger correlation length evidence that this build-in field increases the number of coexisting polarization directions in larger grains leading to an alignment of macrodomains in thinner films.

1.
G. H.
Haertling
, “
Electro-optic ceramics and devices
,” in
Electronic Ceramics
edited by
L. M.
Levinson
(
Marcel Dekker
,
New York, NY, USA
,
1988
).
2.
G. H.
Haertling
,
Ferroelectrics
75
,
25
(
1987
).
3.
C. S.
Lynch
,
Acta Mater.
44
,
4137
(
1996
).
4.
G. H.
Haertling
,
J. Am. Ceram. Soc.
82
,
797
(
1999
).
5.
R.
Thapliya
,
Y.
Okano
, and
S.
Nakamura
,
J. Lightwave Technol.
21
,
1820
(
2003
).
6.
Z. Q.
Hu
,
B. H.
Ma
,
S. S.
Liu
,
M.
Narayanan
, and
U.
Balachandran
,
Ceram. Int.
40
,
557
(
2014
).
7.
S. C.
Lai
,
K.
Yao
,
Y. F.
Chen
,
L.
Zhang
, and
Y. F.
Lim
,
IEEE Electron Devices Lett.
34
,
1427
(
2013
).
8.
E. B.
Araujo
,
B. O.
Nahime
,
M.
Melo
,
F.
Dinelli
,
F.
Tantussi
,
P.
Baschieri
,
F.
Fuso
, and
M.
Allegrini
,
Mater. Res. Bull.
61
,
26
(
2015
).
9.
H. M.
Rietveld
,
Acta Crystallogr.
22
,
151
(
1967
).
10.
B. H.
Toby
,
J. Appl. Cryst.
34
,
210
(
2001
).
11.
P.
Thompson
,
D. E.
Cox
, and
J. B.
Hastings
,
J. Appl. Crystallogr.
20
,
79
(
1987
).
12.
L. B.
McCusker
,
R. B.
Von Dreele
,
D. E.
Cox
,
D.
Louër
, and
P.
Scardi
,
J. Appl. Cryst.
32
,
36
(
1999
).
13.
N.
Balke
,
I.
Bdikin
,
S. V.
Kalinin
, and
A. L.
Kholkin
,
J. Am. Ceram. Soc.
92
,
1629
(
2009
).
14.
V. V.
Efimov
,
E. A.
Efimova
,
K.
Iakoubovskii
,
S.
Khasanovc
,
D. I.
Kochubey
,
V. V.
Kriventsov
,
A.
Kuzmin
,
B. N.
Mavrin
,
M.
Sakharov
,
V.
Sikolenko
,
A. N.
Shmakov
, and
S. I.
Tiutiunnikov
,
J. Phys. Chem. Solids
67
,
2007
(
2006
).
15.
X. Y.
Wen
,
J.
Yu
,
Y. B.
Wang
,
W. L.
Zhou
, and
J. X.
Gao
,
J. Appl. Phys.
108
,
114103
(
2010
).
16.
G.
Leclerc
,
B.
Domengès
,
G.
Poullain
, and
R.
Bouregba
,
Appl. Surf. Sci.
253
,
1143
(
2006
).
17.
S. Q.
Zhang
,
L. D.
Wang
,
W. L.
Li
,
N.
Li
, and
W. D.
Fei
,
J. Alloys Compd.
509
,
2976
(
2011
).
18.
A.
Ferri
,
S.
Saitzek
,
A.
Da Costa
,
R.
Desfeux
,
G.
Leclerc
,
R.
Bouregba
, and
G.
Poullain
,
Surf. Sci.
602
,
1987
(
2008
).
19.
A.
Wu
,
P. M.
Vilarinho
,
V. V.
Shvartsman
,
G.
Suchaneck
, and
A. L.
Kholkin
,
Nanotechnology
16
,
2587
(
2005
).
20.
L.
Tian
,
A.
Vasudevarao
,
A. N.
Morozovska
,
E. A.
Eliseev
,
S. V.
Kalinin
, and
V.
Gopalan
,
J. Appl. Phys.
104
,
074110
(
2008
).
21.
S.
Hong
,
J.
Woo
,
H.
Shin
,
J. U.
Jeon
,
Y. E.
Pak
,
E. L.
Colla
,
N.
Setter
,
E.
Kim
, and
K.
No
,
J. Appl. Phys.
89
,
1377
(
2001
).
22.
A. L.
Kholkin
,
K. G.
Brooks
,
D. V.
Taylor
,
S.
Hiboux
, and
N.
Setter
,
Integr. Ferroelectr.
22
,
525
(
1998
).
23.
V. P.
Afanasjev
,
A. A.
Petrov
,
I. P.
Pronin
,
E. A.
Tarakanov
,
E. Ju.
Kaptelov
, and
J.
Graul
,
J. Phys.: Condens. Matter
13
,
8755
(
2001
).
24.
A.
Gruverman
,
B. J.
Rodriguez
,
A. I.
Kingon
,
R. J.
Nemanich
,
A. K.
Tagantsev
,
J. S.
Cross
, and
M.
Tsukada
,
Appl. Phys. Lett.
83
,
728
(
2003
).
25.
V. P.
Afanasjev
,
I. P.
Pronin
, and
A. L.
Kholkin
,
Phys. Solid State
48
,
1214
(
2006
).
26.
K.
Okazaki
and
K.
Nagata
,
J. Am. Ceram. Soc.
56
,
82
(
1973
).
27.
A. K.
Tagantsev
and
G.
Gerra
,
J. Appl. Phys.
100
,
051607
(
2006
).
28.
E. B.
Araujo
,
E. C.
Lima
,
I. K.
Bdikin
, and
A. L.
Kholkin
,
J. Appl. Phys.
113
,
187206
(
2013
).
29.
E. B.
Araujo
,
E. C.
Lima
,
I. K.
Bdikin
, and
A. L.
Kholkin
,
Ferroelectrics
498
,
18
(
2016
).
30.
R. C.
Munoz
,
G.
Vidal
,
M.
Mulsow
,
J. G.
Lisoni
,
C.
Arenas
,
A.
Concha
,
F.
Mora
, and
R.
Espejo
,
Phys. Rev. B
62
,
4686
(
2000
).
31.
D. A.
Kiselev
,
I. K.
Bdikin
,
E. K.
Selezneva
,
K.
Bormanis
,
A.
Sternberg
, and
A. L.
Kholkin
,
J. Phys. D: Appl. Phys.
40
,
7109
(
2007
).
32.
W. L.
Li
,
T. D.
Zhang
,
Y. F.
Hou
,
Y.
Zhao
,
D.
Xu
,
W. P.
Cao
, and
W. D.
Fei
,
RSC Adv.
4
,
56933
(
2014
).
33.
V. V.
Shvartsman
,
B.
Dkhil
, and
A. L.
Kholkin
,
Annu. Rev. Mater. Res.
43
,
423
(
2013
).
34.
W.
Kleemann
,
J. Mater. Sci.
41
,
129
(
2006
).
35.
G. A.
Samara
,
J. Phys.: Condens. Matter
15
,
R367
(
2003
).
You do not currently have access to this content.