The molecular dynamics simulation method is used to investigate the dependence of crystal orientation and shock wave strength on dislocation density evolution in single crystal Cu. Four different shock directions 〈100〉, 〈110〉, 〈111〉, and 〈321〉 are selected to study the role of crystal orientation on dislocation generation immediately behind the shock front and plastic relaxation as the system reaches the hydrostatic state. Dislocation density evolution is analyzed for particle velocities between the Hugoniot elastic limit (upHEL) for each orientation up to a maximum of 1.5 km/s. Generally, dislocation density increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the 〈110〉, 〈111〉, and 〈321〉 directions is primarily due to a reduction in the Shockley partial dislocation density. In addition, plastic anisotropy between these orientations is less apparent at particle velocities above 1.1 km/s. In contrast, plastic relaxation is limited for shock in the 〈100〉 orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3〈100〉 and 1/6〈110〉. The nucleation of 1/6〈110〉 dislocations at lower particle velocities is mainly due to the reaction between Shockley partial dislocations and twin boundaries. On the other hand, for the particle velocities above 1.1 km/s, the nucleation of 1/3〈100〉 dislocations is predominantly due to reaction between Shockley partial dislocations at stacking fault intersections. Both mechanisms promote greater dislocation densities after relaxation for shock pressures above 34 GPa compared to the other three shock orientations.

1.
T.
Hatano
, “
Dislocation nucleation in shocked fcc solids: Effects of temperature and preexisting voids
,”
Phys. Rev. Lett.
93
(
8
),
085501
(
2004
).
2.
O.
Kum
, “
Orientation effects in shocked nickel single crystals via molecular dynamics
,”
J. Appl. Phys.
93
(
6
),
3239
3247
(
2003
).
3.
H. N.
Jarmakani
,
E. M.
Bringa
,
P.
Erhart
,
B. A.
Remington
,
Y. M.
Wang
,
N. Q.
Vo
, and
M. A.
Meyers
, “
Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals
,”
Acta Mater.
56
(
19
),
5584
5604
(
2008
).
4.
B.
Cao
,
E. M.
Bringa
, and
M. A.
Meyers
, “
Shock compression of monocrystalline copper: Atomistic simulations
,”
Metall. Mater. Trans. A
38
(
11
),
2681
2688
(
2007
).
5.
M. S.
Schneider
,
B. K.
Kad
,
M. A.
Meyers
,
F.
Gregori
,
D.
Kalantar
, and
B. A.
Remington
, “
Laser-induced shock compression of copper: Orientation and pressure decay effects
,”
Metall. Mater. Trans. A
35
(
9
),
2633
2646
(
2004
).
6.
F.
Cao
,
I. J.
Beyerlein
,
F. L.
Addessio
,
B. H.
Sencer
,
C. P.
Trujillo
,
E. K.
Cerreta
, and
G. T.
Gray
 III
, “
Orientation dependence of shock-induced twinning and substructures in a copper bicrystal
,”
Acta Mater.
58
(
2
),
549
559
(
2010
).
7.
A. M.
Podurets
,
V. A.
Raevskii
,
V. G.
Khanzhin
,
A. I.
Lebedev
,
O. N.
Aprelkov
,
V. V.
Igonin
,
I. N.
Kondrokhina
,
A. N.
Balandina
,
M. I.
Tkachenko
,
J.
Petit
, and
M. A.
Zocher
, “
Twin structures in copper after shock and Shockless high-rate loading
,”
Combust. Explos. Shock Waves
47
(
5
),
606
614
(
2011
).
8.
B.
Cao
,
D. H.
Lassila
,
C.
Huang
,
Y.
Xu
, and
M. A.
Meyers
, “
Shock compression of monocrystalline copper: Experiments, characterization, and analysis
,”
Mater. Sci. Eng. A
527
(
3
),
424
434
(
2010
).
9.
K.
Kadau
,
F. J.
Cherne
,
R.
Ravelo
, and
T. C.
Germann
, “
Shock-induced phase transformations in gallium single crystals by atomistic methods
,”
Phys. Rev. B
88
(
14
),
144108
(
2013
).
10.
A. M.
He
,
P.
Wang
,
J. L.
Shao
,
S. Q.
Duan
,
F. P.
Zhao
, and
S. N.
Luo
, “
Solid-liquid phase transitions in single crystal Cu under shock and release conditions
,”
J. Appl. Phys.
115
(
14
),
143503
(
2014
).
11.
N.
Gunkelmann
,
E. M.
Bringa
,
D. R.
Tramontina
,
C. J.
Ruestes
,
M. J.
Suggit
,
A.
Higginbotham
,
J. S.
Wark
, and
H. M.
Urbassek
, “
Shock waves in polycrystalline iron: Plasticity and phase transitions
,”
Phys. Rev. B
89
(
14
),
140102
(
2014
).
12.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
,
R. C.
Albers
,
J. S.
Wark
,
A.
Higginbotham
, and
B. L.
Holian
, “
Shock Waves in polycrystalline iron
,”
Phys. Rev. Lett.
98
(
13
),
135701
(
2007
).
13.
B. L.
Holian
and
P. S.
Lomdahl
, “
Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations
,”
Science
280
(
5372
),
2085
2088
(
1998
).
14.
T. C.
Germann
,
B. L.
Holian
,
P. S.
Lomdahl
, and
R.
Ravelo
, “
Orientation dependence in molecular dynamics simulations of shocked single crystals
,”
Phys. Rev. Lett.
84
(
23
),
5351
5354
(
2000
).
15.
T. C.
Germann
,
B. L.
Holian
,
P. S.
Lomdahl
,
D.
Tanguy
,
M.
Mareschal
, and
R.
Ravelo
, “
Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results
,”
Metall. Mater. Trans. A
35
(
9
),
2609
2615
(
2004
).
16.
D.
Tanguy
,
M.
Mareschal
,
P. S.
Lomdahl
,
T. C.
Germann
,
B. L.
Holian
, and
R.
Ravelo
, “
Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations
,”
Phys. Rev. B
68
(
14
),
144111
(
2003
).
17.
D.
Tanguy
,
M.
Mareschal
,
T. C.
Germann
,
B. L.
Holian
,
P. S.
Lomdahl
, and
R.
Ravelo
, “
Plasticity induced by a shock wave: large scale molecular dynamics simulations
,”
Mater. Sci. Eng. A
387–389
(
1–2
),
262
265
(
2004
).
18.
M. A.
Meyers
,
F.
Gregori
,
B. K.
Kad
,
M. S.
Schneider
,
D. H.
Kalantar
,
B. A.
Remington
,
G.
Ravichandran
,
T.
Boehly
, and
J. S.
Wark
, “
Laser-induced shock compression of monocrystalline copper: characterization and analysis
,”
Acta Mater.
51
(
5
),
1211
1228
(
2003
).
19.
L. E.
Murr
,
in Shock Waves and High-Strain-Rate Phenomena in Metals
, edited by
M. A.
Meyers
and
L. E.
Murr
(
Plenum
,
New York
,
1981
), pp.
60
67
.
20.
E. M.
Bringa
,
K.
Rosolankova
,
R. E.
Rudd
,
B. A.
Remington
,
J. S.
Wark
,
M.
Duchaineau
,
D. H.
Kalantar
,
J.
Hawreliak
, and
J.
Belak
, “
Shock deformation of face-centred-cubic metals on subnanosecond timescales
,”
Nat. Mater.
5
(
10
),
805
809
(
2006
).
21.
M. A.
Shehadeh
,
H. M.
Zbib
, and
T. D.
De La Rubia
, “
Multiscale dislocation dynamics simulations of shock compression in copper single crystal
,”
Int. J. Plast.
21
(
12
),
2369
2390
(
2005
).
22.
M. A.
Shehadeh
,
E. M.
Bringa
,
H. M.
Zbib
,
J. M.
McNaney
, and
B. A.
Remington
, “
Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations
,”
Appl. Phys. Lett.
89
(
17
),
171918
(
2006
).
23.
A.
Loveridge-Smith
,
A.
Allen
,
J.
Belak
,
T.
Boehly
,
A.
Hauer
,
B.
Holian
,
D.
Kalantar
,
G.
Kyrala
,
R. W.
Lee
,
P.
Lomdahl
,
M. A.
Meyers
,
D.
Paisley
,
S.
Pollaine
,
B.
Remington
,
D. C.
Swift
,
S.
Weber
, and
J. S.
Wark
, “
Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales
,”
Phys. Rev. Lett.
86
(
11
),
2349
2352
(
2001
).
24.
P. A.
Rigg
and
Y. M.
Gupta
, “
Multiple x-ray diffraction to determine transverse and longitudinal lattice deformation in shocked lithium fluoride
,”
Phys. Rev. B
63
(
9
),
094112
(
2001
).
25.
K.
Rosolankova
, in
Shock Compression of Condensed Matter
, edited by
M. D.
Furnish
,
Y. M.
Gupta
, and
J. W.
Forbes
(
AIP
, Melville, New York
,
2004
), pp.
1195
1198
.
26.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
Wiley
,
New York
,
1982
).
27.
A.
Stukowski
and
K.
Albe
, “
Extracting dislocations and non-dislocation crystal defects from atomistic simulation data
,”
Model. Simul. Mater. Sci. Eng.
18
(
8
),
085001
(
2010
).
28.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comp. Phys.
117
(
1
),
1
19
(
1995
).
29.
Y. M.
Mishin
,
M.
Mehl
,
D.
Papaconstantopoulos
,
A. F.
Voter
, and
J.
Kress
, “
Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations
,”
Phys. Rev. B
63
(
22
),
224106
(
2001
).
30.
M. A.
Tschopp
,
D. E.
Spearot
, and
D. L.
McDowell
, “
Atomistic simulations of homogeneous dislocation nucleation in single crystal copper
,”
Model. Simul. Mater. Sci. Eng.
15
(
7
),
693
709
(
2007
).
31.
A.
Bolesta
,
L.
Zheng
,
D.
Thompson
, and
T.
Sewell
, “
Molecular dynamics simulations of shock waves using the absorbing boundary condition: A case study of methane
,”
Phys. Rev. B
76
(
22
),
224108
(
2007
).
32.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2010
).
33.
E. M.
Bringa
,
J. U.
Cazamias
,
P.
Erhart
,
J.
Stölken
,
N.
Tanushev
,
B. D.
Wirth
,
R. E.
Rudd
, and
M. J.
Caturla
, “
Atomistic shock Hugoniot simulation of single-crystal copper
,”
J. Appl. Phys.
96
(
7
),
3793
(
2004
).
34.
A. C.
Mitchell
and
W. J.
Nellis
, “
Shock compression of aluminum, copper, and tantalum
,”
J. Appl. Phys.
52
(
5
),
3363
3374
(
1981
).
35.
S.
Ogata
,
J.
Li
, and
S.
Yip
, “
Ideal pure shear strength of aluminum and copper
,”
Science
298
(
5594
),
807
811
(
2002
).
36.
D. E.
Spearot
,
K. I.
Jacob
, and
D. L.
McDowell
, “
Nucleation of dislocations from [001] bicrystal interfaces in aluminum
,”
Acta Mater.
53
(
13
),
3579
3589
(
2005
).
37.
D. E.
Spearot
,
M. A.
Tschopp
,
K. I.
Jacob
, and
D. L.
McDowell
, “
Tensile strength of 100 and 110 tilt bicrystal copper interfaces
,”
Acta Mater.
55
(
2
),
705
714
(
2007
).
38.
D.
Seif
,
G.
Po
,
R.
Crum
,
V.
Gupta
, and
N. M.
Ghoniem
, “
Shock-induced plasticity and the Hugoniot elastic limit in copper nano films and rods
,”
J. Appl. Phys.
115
(
5
),
054301
(
2014
).
39.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
(
17
),
11085
11088
(
1998
).
40.
U.
Kaiser
and
I. I.
Khodos
, “
On the determination of partial dislocation Burgers vectors in fcc lattices and its application to cubic SiC films
,”
Philos. Mag. A
82
(
3
),
541
551
(
2002
).
41.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Model. Simul. Mater. Sci. Eng.
20
(
4
),
045021
(
2012
).
42.
Y. T.
Zhu
,
X. Z.
Liao
, and
X. L.
Wu
, “
Deformation twinning in nanocrystalline materials
,”
Prog. Mater. Sci.
57
(
1
),
1
62
(
2012
).
43.
A. V.
Bolesta
and
V. M.
Fomin
, “
Phase transition behind a shock front in polycrystalline copper
,”
Dokl. Phys.
59
(
6
),
249
253
(
2014
).
44.
M. M.
Sichani
and
D. E.
Spearot
, “
A molecular dynamics study of the role of grain size and orientation on compression of nanocrystalline Cu during shock
,”
Comput. Mater. Sci.
108
,
226
232
(
2015
).
You do not currently have access to this content.