We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as “exponential perturbation theory”). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.

1.
M.
Feraille
,
D.
Rideau
,
A.
Ghetti
, and
A.
Poncet
, in
2006 International Conference on Simulation of Semiconductor Processes and Devices
(
2006
), pp.
264
266
.
2.
M.
Saraniti
and
S. M.
Goodnick
,
IEEE Trans. Electron. Devices
47
,
1909
(
2000
).
3.
R.
Hathwar
,
M.
Saraniti
, and
S. M.
Goodnick
,
J. Phys.: Conf. Ser.
647
,
012029
(
2015
).
4.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
5.
M.
Fischetti
,
IEEE Trans. Electron Devices
38
,
634
649
(
1991
).
6.
H.-E.
Nilsson
,
A.
Martinez
,
E.
Ghillino
,
U.
Sannemo
,
E.
Bellotti
, and
M.
Goano
,
J. Appl. Phys.
90
,
2847
(
2001
).
7.
E.
Bellotti
,
H.-E.
Nilsson
,
K. F.
Brennan
,
P. P.
Ruden
, and
R. J.
Trew
,
J. Appl. Phys.
87
,
3864
(
2000
).
8.
K. F.
Brennan
,
E.
Bellotti
,
M.
Farahmand
,
H.-E.
Nilsson
,
P. P.
Ruden
, and
Y.
Zhang
,
IEEE Trans. Electron Devices
47
,
1882
(
2000
).
9.
J. B.
Krieger
and
G. J.
Iafrate
,
Phys. Rev. B
33
,
5494
5500
(
1986
).
10.
F.
Bertazzi
,
M.
Moresco
, and
E.
Bellotti
,
J. Appl. Phys.
106
,
063718
(
2009
).
11.
W.
Magnus
,
Commun. Pure Appl. Math.
7
(
4
),
649
673
(
1954
).
12.
S.
Blanes
,
F.
Casas
,
J. A.
Oteo
, and
J.
Ros
,
Phys. Rep.
470
,
151
238
(
2009
).
13.
A.
Iserles
and
S. P.
Nørsett
,
Philos. Trans. R. Soc. London, Ser. A
357
,
983
1019
(
1999
).
14.
F.
Fer
,
Acad. Roy. Belg. Bull. Cl. Sci.
44
,
818
829
(
1958
).
15.
R. M.
Wilcox
,
J. Math. Phys.
8
,
962
(
1967
).
16.
E.
Schrödinger
,
Ann. Phys.
385
,
437
490
(
1926
).
17.
U.
Lindefeldt
,
H.-E.
Nilsson
, and
M.
Hjelm
,
Semicond. Sci. Technol.
19
,
1061
1066
(
2004
).
18.
M.
Luisier
,
A.
Schenk
,
W.
Fichtner
, and
G.
Klimeck
,
Phys. Rev. B
74
,
205323
(
2006
).
19.
A.
Iserles
,
A.
Marthinsen
, and
S. P.
Nørsett
,
BIT Numer. Math.
39
,
281
304
(
1999
).
20.
C.
Moler
and
C.
VanLoan
,
SIAM Rev.
45
(
1
),
3
49
(
2003
).
21.
L.
Wen-cheng
,
D.
Zi-chen
, and
H.
Yong-an
,
Appl. Math. Mech.
27
,
1383
1390
(
2006
).
22.
N. D.
Aparicio
,
S. J. A.
Malham
, and
M.
Oliver
,
BIT Numer. Math.
45
(
2
),
219
258
(
2005
).
23.
G. J.
Iafrate
and
J. B.
Krieger
,
Phys. Rev. B
40
,
9
(
1989
).
24.
A. K.
Buin
,
A.
Verma
, and
M. P.
Anantram
,
J. Appl. Phys.
104
,
053716
(
2008
).
25.
R.
Hathwar
,
M.
Saraniti
, and
S. M.
Goodnick
, in
2014 IEEE 14th International Conference on Nanotechnology
(
2014
), pp.
645
649
.
You do not currently have access to this content.