We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ∼660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ∼2%, implying an accuracy in the derived electron plasma temperature of 5%–10% in pump–probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ∼ 0.5, the electron temperature follows Te ∼ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.

1.
R. P.
Drake
,
High-Energy-Density Physics: Fundamentals Inertial Fusion, and Experimental Astrophysics
(
Springer
,
2006
).
2.
J.
Colvin
and
J.
Larsen
,
Extreme Physics: Properties and Behavior of Matter at Extreme Conditions
(
Cambridge University Press
,
2013
).
3.
V. E.
Fortov
,
Extreme States of Matter
(
Springer
,
2011
).
4.
R. J.
Trainor
,
J. W.
Shaner
,
J. M.
Auerbach
, and
N. C.
Holmes
, “
Ultrahigh-pressure laser-driven shock-wave experiments in aluminium
,”
Phys. Rev. Lett.
42
,
1154
1158
(
1979
).
5.
P.
Mora
, “
Theoretical model of absorption of laser light by a plasma
,”
Phys. Fluids
25
,
1051
1056
(
1982
).
6.
S. I.
Anisimov
,
A. M.
Prokhorov
, and
V. E.
Fortov
, “
Application of high-power lasers to study matter at ultrahigh pressures
,”
Sov. Phys. - Usp.
27
,
181
205
(
1984
).
7.
D.
Batani
,
R.
Dezulian
,
H.
Stabile
,
M.
Tomasini
,
G.
Lucchini
,
F.
Canova
,
R.
Redaelli
,
M.
Koenig
,
A.
Benuzzi
,
H.
Nishimura
,
Y.
Ochi
,
J.
Ullschmied
,
J.
Skala
,
B.
Kralikova
,
M.
Pfeifer
,
T.
Mocek
,
A.
Präg
,
T.
Hall
,
P.
Milani
,
E.
Barborini
, and
P.
Piseri
, “
High pressure laser-generated shocks and application to EOS of carbon
,”
J. Phys.: Conf. Ser.
71
,
012001
(
2007
).
8.
E.
Moses
, “
The National Ignition Facility: An experimental platform for studying behaviour of matter under extreme conditions
,”
Astrphys. Space Sci.
336
,
3
(
2011
).
9.
M. G.
Gorman
,
R.
Briggs
,
E. E.
McBride
,
A.
Higginbotham
,
B.
Arnold
,
J. H.
Eggert
,
D. E.
Fratanduono
,
E.
Galtier
,
A. E.
Lazicki
,
H. J.
Lee
,
H. P.
Liermann
,
B.
Nagler
,
A.
Rothkirch
,
R. F.
Smith
,
D. C.
Swift
,
G. W.
Collins
,
J. S.
Wark
, and
M. I.
McMahon
, “
Direct observation of melting in shock-compressed bismuth with femtosecond x-ray diffraction
,”
Phys. Rev. Lett.
115
,
095701
(
2015
).
10.
D.
Milathianaki
,
S.
Boutet
,
G. J.
Williams
,
A.
Higginbotham
,
D.
Ratner
,
A. E.
Gleason
,
M.
Messerschmidt
,
M. M.
Seibert
,
D. C.
Swift
,
P.
Hering
,
J.
Robinson
,
W. E.
White
, and
J. S.
Wark
, “
Femtosecond visualization of lattice dynamics in shock-compressed matter
,”
Science
342
,
220
223
(
2013
).
11.
M.
Yabashi
,
H.
Tanaka
, and
T.
Ishikawa
, “
Overview of the SACLA facility
,”
J. Synchrotron Radiat.
22
(
3
),
477
484
(
2015
).
12.
A. Ya.
Faenov
,
S. A.
Pikuz
,
A. I.
Erko
,
B. A.
Bryunetkin
,
V. M.
Dyakin
,
G. V.
Ivanenkov
,
A. R.
Mingaleev
,
T. A.
Pikuz
,
V. M.
Romanova
, and
T. A.
Shelkovenko
, “
High-performance X-ray spectroscopic devices for plasma microsources investigations
,”
Phys. Scr.
50
,
333
338
(
1994
).
13.
T. A.
Pikuz
,
A. Ya.
Faenov
,
S. A.
Pikuz
,
V. M.
Romanova
, and
T. A.
Shelkovenko
, “
Bragg X-ray optics for imaging spectroscopy of plasma microsources
,”
J. X-ray Sci. Technol.
5
,
323
340
(
1995
).
14.
P.
Nickles
,
M.
Kalashnikov
,
M.
Shnurer
,
B.
Bryunetkin
,
I.
Skobelev
, and
A.
Faenov
, “
High-resolution X-ray diagnostics of high-temperature plasma with picosecond time resolution
,”
JETP Lett.
62
,
910
915
(
1995
).
15.
V. A.
Boiko
,
A. Ya.
Faenov
, and
S. A.
Pikuz
, “
X-ray spectroscopy of multiply-charged ions from laser plasmas
,”
J. Quant. Spectrosc. Radiat. Trans.
19
,
11
50
(
1978
).
16.
V. A.
Boiko
,
A. V.
Vinogradov
,
S. A.
Pikuz
,
I. Yu.
Skobelev
, and
A. Ya.
Faenov
, “
The X-ray Spectroscopy of laser-produced plasma
,”
J. Sov. Laser Res.
6
,
85
290
(
1985
).
17.
F. B.
Rosmej
,
U. N.
Funk
,
M.
Geissel
,
D. H. H.
Hofmann
,
A.
Tausehwitz
,
A. Ya.
Faenov
,
T. A.
Pikuz
,
I. Yu.
Skobelev
,
F.
Flora
,
S.
Bollanti
,
P.
Di Lazzaro
,
T.
Letardi
,
A.
Grilli
,
L.
Palladino
,
A.
Reale
,
A.
Scafati
,
L.
Reale
,
T.
Auguste
,
P.
D'Oliveira
,
S.
Hulin
,
P.
Monot
,
A.
Maksimchuk
,
S. A.
Pikuz
,
D.
Umstadter
,
M.
Nanatel
,
R.
Bock
,
M.
Dornik
,
M.
Stetter
,
S.
Stoewe
,
V.
Yakushev
,
M.
Kulish
, and
N.
Shilkin
, “
X-ray radiation from ions with K-shell vacancies
,”
J. Quant. Spectrosc. Radiat. Transfer
65
,
477
499
(
2000
).
18.
B.
Albertazzi
,
N.
Ozaki
,
V.
Zhakhovsky
,
A.
Faenov
,
H.
Habara
,
M.
Harmand
,
N. J.
Hartley
,
D.
Ilnitsky
,
N.
Inogamov
,
Y.
Inubushi
,
T.
Ishikawa
,
T.
Katayama
,
M.
Koenig
,
A.
Krygier
,
T.
Matsuoka
,
S.
Matsuyama
,
E.
McBride
,
K.
Migdal
,
G.
Morard
,
T.
Okuchi
,
T.
Pikuz
,
O.
Sakata
,
Y.
Sano
,
T.
Sato
,
T.
Sekine
,
T.
Seto
,
K.
Takahashi
,
H.
Tanaka
,
K. A.
Tanaka
,
Y.
Tange
,
T.
Togashi
,
K.
Tono
,
Y.
Umeda
,
T.
Vinci
,
M.
Yabashi
,
T.
Yabuuchi
,
K.
Yamauchi
, and
R.
Kodama
, “
Spallation of laser-shocked tantalum lattice under extreme tensile stress recorded by X-ray real time monitoring technique
,”
Science
(submitted).
19.
A. S.
Safronova
,
V. L.
Kantsyrev
,
A. A.
Esaulov
,
N. D.
Ouart
,
U. I.
Safronova
,
I.
Shrestha
, and
K. M.
Williamson
, “
X-ray spectroscopy and imaging of stainless steel X-pinches with application to astrophysics
,”
Eur. Phys. J.: Spec. Top.
169
,
155
158
(
2009
).
20.
A. S.
Safronova
,
V. L.
Kantsyrev
,
A. A.
Esaulov
,
N. D.
Ouart
,
M. F.
Yilmaz
,
K. M.
Williamson
,
I.
Shrestha
,
G. C.
Osborne
,
J. B.
Greenly
,
K. M.
Chandler
,
R. D.
McBride
,
D. A.
Chalenski
,
D. A.
Hammer
,
B. R.
Kusse
, and
P. D.
LePell
, “
Spectroscopy and implosion dynamics of low wire number nested arrays on the 1 MA COBRA generator
,”
Phys. Plasmas
15
,
033302
(
2008
).
21.
N. D.
Ouart
,
A. S.
Safronova
,
A. Ya.
Faenov
,
T. A.
Pikuz
,
S. V.
Gasilov
,
F.
Calegari
,
M.
Nisoli
,
S.
De Silvestri
,
S.
Stagira
,
L.
Poletto
, and
P.
Villoresi
, “
Analysis of the simultaneous measurements of iron K- and L-shell radiation from ultrashort laser produced plasmas
,”
J. Phys. B: At. Mol. Opt. Phys.
44
,
065602
(
2011
).
22.
M. F.
Gu
, “
The flexible atomic code
,”
Can. J. Phys.
86
,
675
689
(
2008
).
23.
P. M.
Celliers
,
D. K.
Bradley
,
G. W.
Collins
,
D. G.
Hicks
,
T. R.
Boehly
, and
W. J.
Armstrong
, “
Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
,”
Rev. Sci. Instrum.
75
,
4916
4929
(
2004
).
24.
N.
Ozaki
,
T.
Sano
,
M.
Ikoma
,
K.
Shigemori
,
T.
Kimura
,
K.
Miyanishi
,
T.
Vinci
,
F. H.
Ree
,
H.
Azechi
,
T.
Endo
,
Y.
Hironaka
,
Y.
Hori
,
A.
Iwamoto
,
T.
Kadono
,
H.
Nagatomo
,
M.
Nakai
,
T.
Norimatsu
,
T.
Okuchi
,
K.
Otani
,
T.
Sakaiya
,
K.
Shimizu
,
A.
Shiroshita
,
A.
Sunahara
,
H.
Takahashi
, and
R.
Kodama
, “
Shock Hugoniot and temperature data for polystyrene obtained with quartz standard
,”
Phys. Plasmas
16
,
062702
(
2009
).
You do not currently have access to this content.