In this study, we provide insights into planar structure methylammonium lead triiodide (MAPbI3) perovskite solar cells (PSCs) using electroluminescence and photoluminescence imaging techniques. We demonstrate the strength of these techniques in screening relatively large area PSCs, correlating the solar cell electrical parameters to the images and visualizing the features which contribute to the variation of the parameters extracted from current density-voltage characterizations. It is further used to investigate one of the major concerns about perovskite solar cells, their long term stability and aging. Upon storage under dark in dry glovebox condition for more than two months, the major parameter found to have deteriorated in electrical performance measurements was the fill factor; this was elucidated via electroluminescence image comparisons which revealed that the contacts' quality degrades. Interestingly, by deploying electroluminescence imaging, the significance of having a pin-hole free active layer is demonstrated. Pin-holes can grow over time and can cause degradation of the active layer surrounding them.

1.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
, “
The emergence of perovskite solar cells
,”
Nat. Photonics
8
,
506
514
(
2014
).
2.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
, and
E. D.
Dunlop
, “
Solar cell efficiency tables (version 46)
,”
Prog. Photovoltaics
23
,
805
812
(
2015
).
3.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
,
6050
6051
(
2009
).
4.
N. J.
Jeon
,
J. H.
Noh
,
W. S.
Yang
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
, “
Compositional engineering of perovskite materials for high-performance solar cells
,”
Nature
517
,
476
480
(
2015
).
5.
Q.
Chen
,
H.
Zhou
,
Z.
Hong
,
S.
Luo
,
H.-S.
Duan
,
H.-H.
Wang
,
Y.
Liu
,
G.
Li
, and
Y.
Yang
, “
Planar heterojunction perovskite solar cells via vapor assisted solution process
,”
J. Am. Chem. Soc.
136
,
622
625
(
2014
).
6.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
, “
Efficient planar heterojunction perovskite solar cells by vapour deposition
,”
Nature
501
,
395
398
(
2013
).
7.
J.
Burschka
,
N.
Pellet
,
S.-J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Gratzel
, “
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
,”
Nature
499
,
316
319
(
2013
).
8.
J. H.
Heo
,
S. H.
Im
,
J. H.
Noh
,
T. N.
Mandal
,
C.-S.
Lim
,
J. A.
Chang
,
Y. H.
Lee
,
H.-j.
Kim
,
A.
Sarkar
,
Md. K.
Nazeeruddin
 et al., “
Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
,”
Nat. Photonics
7
,
486
491
(
2013
).
9.
F.
Huang
,
Y.
Dkhissi
,
W.
Huang
,
M.
Xiao
,
I.
Benesperi
,
S.
Rubanov
,
Y.
Zhu
,
X.
Lin
,
L.
Jiang
, and
Y.
Zhou
, “
Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells
,”
Nano Energy
10
,
10
18
(
2014
).
10.
G.
Brown
,
A.
Pudov
,
B.
Cardozo
,
V.
Faifer
,
E.
Bykov
, and
M.
Contreras
, “
Quantitative imaging of electronic nonuniformities in Cu (In, Ga) Se2 solar cells
,”
J. Appl. Phys.
108
,
074516
(
2010
).
11.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
, “
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
,”
Science
342
,
341
344
(
2013
).
12.
M. A.
Green
,
Y.
Jiang
,
A.
Mahboubi Soufiani
, and
A. W.-Y.
Ho-Baillie
, “
Optical properties of photovoltaic organic-inorganic lead halide perovskites
,”
J. Phys. Chem. Lett.
6
,
4774
4785
(
2015
).
13.
B.
Chen
,
M.
Yang
,
X.
Zheng
,
C.
Wu
,
W.
Li
,
Y.
Yan
,
J.
Bisquert
,
G.
Garcia-Belmonte
,
K.
Zhu
, and
S.
Priya
, “
Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
4693
4700
(
2015
).
14.
D. W.
de Quilettes
,
S. M.
Vorpahl
,
S. D.
Stranks
,
H.
Nagaoka
,
G. E.
Eperon
,
M. E.
Ziffer
,
H. J.
Snaith
, and
D. S.
Ginger
, “
Impact of microstructure on local carrier lifetime in perovskite solar cells
,”
Science
348
,
683
686
(
2015
).
15.
M.
Vrućinić
,
C.
Matthiesen
,
A.
Sadhanala
,
G.
Divitini
,
S.
Cacovich
,
S. E.
Dutton
,
C.
Ducati
,
M.
Atatüre
,
H.
Snaith
,
R. H.
Friend
 et al., “
Local versus long-range diffusion effects of photoexcited states on radiative recombination in organic–inorganic lead halide perovskites
,”
Adv. Sci.
2
(
9
),
1500136
(
2015
).
16.
T. A.
Berhe
,
W.-N.
Su
,
C.-H.
Chen
,
C.-J.
Pan
,
J.-H.
Cheng
,
H.-M.
Chen
,
M.-C.
Tsai
,
L.-Y.
Chen
,
A. A.
Dubale
, and
B.-J.
Hwang
, “
Organometal halide perovskite solar cells: Degradation and stability
,”
Energy Environ. Sci.
9
,
323
356
(
2016
).
17.
D.
Wang
,
M.
Wright
,
N. K.
Elumalai
, and
A.
Uddin
, “
Stability of perovskite solar cells
,”
Sol. Energy Mater. Sol. Cells
147
,
255
275
(
2016
).
18.
M.
Seeland
,
R.
Rösch
, and
H.
Hoppe
, “
Luminescence imaging of polymer solar cells: Visualization of progressing degradation
,”
J. Appl. Phys.
109
,
064513
(
2011
).
19.
R.
Rosch
,
D. M.
Tanenbaum
,
M.
Jorgensen
,
M.
Seeland
,
M.
Barenklau
,
M.
Hermenau
,
E.
Voroshazi
,
M. T.
Lloyd
,
Y.
Galagan
,
B.
Zimmermann
 et al., “
Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques-the ISOS-3 inter-laboratory collaboration
,”
Energy Environ. Sci.
5
,
6521
6540
(
2012
).
20.
M. A.
Green
, “
Commercial progress and challenges for photovoltaics
,”
Nat. Energy
1
,
15015
(
2016
).
21.
T.
Trupke
,
B.
Mitchell
,
J.
Weber
,
W.
McMillan
,
R.
Bardos
, and
R.
Kroeze
, “
Photoluminescence imaging for photovoltaic applications
,”
Energy Procedia
15
,
135
146
(
2012
).
22.
T.
Trupke
,
R.
Bardos
,
M.
Schubert
, and
W.
Warta
, “
Photoluminescence imaging of silicon wafers
,”
Appl. Phys. Lett.
89
,
044107
(
2006
).
23.
A.
Helbig
,
T.
Kirchartz
,
R.
Schaeffler
,
J. H.
Werner
, and
U.
Rau
, “
Quantitative electroluminescence analysis of resistive losses in Cu (In, Ga) Se2 thin-film modules
,”
Sol. Energy Mater. Sol. Cells
94
,
979
984
(
2010
).
24.
Z.
Hameiri
,
A.
Mahboubi Soufiani
,
M. K.
Juhl
,
L.
Jiang
,
F.
Huang
,
Y.-B.
Cheng
,
H.
Kampwerth
,
J. W.
Weber
,
M. A.
Green
, and
T.
Trupke
, “
Photoluminescence and electroluminescence imaging of perovskite solar cells
,”
Prog. Photovoltaics
23
,
1697
1705
(
2015
).
25.
S.
Mastroianni
,
F. D.
Heinz
,
J. H.
Im
,
W.
Veurman
,
M.
Padilla
,
M. C.
Schubert
,
U.
Wurfel
,
M.
Gratzel
,
N. G.
Park
, and
A.
Hinsch
, “
Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging
,”
Nanoscale
7
,
19653
19662
(
2015
).
26.
T.
Handa
,
D. M.
Tex
,
A.
Shimazaki
,
T.
Aharen
,
A.
Wakamiya
, and
Y.
Kanemitsu
, “
Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells
,”
Opt. Express
24
,
A917
A924
(
2016
).
27.
A. M.
Soufiani
,
F.
Huang
,
P.
Reece
,
R.
Sheng
,
A.
Ho-Baillie
, and
M. A.
Green
, “
Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites
,”
Appl. Phys. Lett.
107
,
231902
(
2015
).
28.
S. D.
Stranks
,
V. M.
Burlakov
,
T.
Leijtens
,
J. M.
Ball
,
A.
Goriely
, and
H. J.
Snaith
, “
Recombination kinetics in organic-inorganic perovskites: Excitons, free charge, and subgap states
,”
Phys. Rev. Appl.
2
,
034007
(
2014
).
29.
X.
Wen
,
Y.
Feng
,
S.
Huang
,
F.
Huang
,
Y.-B.
Cheng
,
M.
Green
, and
A.
Ho-Baillie
, “
Defect trapping states and charge carrier recombination in organic-inorganic halide perovskites
,”
J. Mater. Chem. C
4
,
793
800
(
2016
).
30.
W.
Shockley
and
W.
Read
, Jr.
, “
Statistics of the recombinations of holes and electrons
,”
Phys. Rev.
87
,
835
(
1952
).
31.
Y.
Shao
,
Z.
Xiao
,
C.
Bi
,
Y.
Yuan
, and
J.
Huang
, “
Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells
,”
Nat. Commun.
5
,
5784
(
2014
).
32.
R. L.
Milot
,
G. E.
Eperon
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
, “
Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films
,”
Adv. Funct. Mater.
25
,
6218
6227
(
2015
).
33.
K.
Bothe
,
P.
Pohl
,
J.
Schmidt
,
T.
Weber
,
P.
Altermatt
,
B.
Fischer
, and
R.
Brendel
, “
Electroluminescence imaging as an in-line characterisation tool for solar cell production
,” in
21st European Photovoltaik Solae Energy Conference, Dresden
(
2006
), pp.
597
600
.
34.
M.
Seeland
,
R.
Rösch
, and
H.
Hoppe
, “
Quantitative analysis of electroluminescence images from polymer solar cells
,”
J. Appl. Phys.
111
,
024505
(
2012
).
35.
P.
Wurfel
, “
The chemical potential of radiation
,”
J. Phys. C: Solid State Phys.
15
,
3967
(
1982
).
36.
U.
Rau
, “
Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells
,”
Phys. Rev. B
76
,
085303
(
2007
).
37.
O. A.
Jaramillo-Quintero
,
R. S.
Sanchez
,
M.
Rincon
, and
I.
Mora-Sero
, “
Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer
,”
J. Phys. Chem. Lett.
6
,
1883
1890
(
2015
).
38.
K.
Wojciechowski
,
S. D.
Stranks
,
A.
Abate
,
G.
Sadoughi
,
A.
Sadhanala
,
N.
Kopidakis
,
G.
Rumbles
,
C.-Z.
Li
,
R. H.
Friend
, and
A. K.-Y.
Jen
, “
Heterojunction modification for highly efficient organic–inorganic perovskite solar cells
,”
ACS Nano
8
,
12701
12709
(
2014
).
39.
K.
Wojciechowski
,
T.
Leijtens
,
S.
Siprova
,
C.
Schlueter
,
M. T.
Hörantner
,
J. T.-W.
Wang
,
C.-Z.
Li
,
A. K. Y.
Jen
,
T.-L.
Lee
, and
H. J.
Snaith
, “
C60 as an efficient n-Type compact layer in perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
2399
2405
(
2015
).
40.
M.
Okano
,
M.
Endo
,
A.
Wakamiya
,
M.
Yoshita
,
H.
Akiyama
, and
Y.
Kanemitsu
, “
Degradation mechanism of perovskite CH3NH3PbI3 diode devices studied by electroluminescence and photoluminescence imaging spectroscopy
,”
Appl. Phys. Express
8
,
102302
(
2015
).
41.
B.
Wu
,
K.
Fu
,
N.
Yantara
,
G.
Xing
,
S.
Sun
,
T. C.
Sum
, and
N.
Mathews
, “
Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis
,”
Adv. Energy Mater.
5
,
1500829
(
2015
).
42.
A.
Guerrero
,
J.
You
,
C.
Aranda
,
Y. S.
Kang
,
G.
Garcia-Belmonte
,
H.
Zhou
,
J.
Bisquert
, and
Y.
Yang
, “
Interfacial degradation of planar lead halide perovskite solar cells
,”
ACS Nano
10
,
218
224
(
2016
).
43.
Y.
Han
,
S.
Meyer
,
Y.
Dkhissi
,
K.
Weber
,
J. M.
Pringle
,
U.
Bach
,
L.
Spiccia
, and
Y.-B.
Cheng
, “
Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity
,”
J. Mater. Chem. A
3
,
8139
8147
(
2015
).
44.
See supplementary material at http://dx.doi.org/10.1063/1.4956436 for more experimental details results, and discussions.
45.
J.
Raguse
,
J. T.
McGoffin
, and
J. R.
Sites
, “
Electroluminescence system for analysis of defects in CdTe cells and modules
,” in
2012 38th IEEE Photovoltaic Specialists Conference (PVSC)
(
2012
), pp.
000448
000451
.
46.
M.
De Bastiani
,
G.
Dell'Erba
,
M.
Gandini
,
V.
D'Innocenzo
,
S.
Neutzner
,
A. R. S.
Kandada
,
G.
Grancini
,
M.
Binda
,
M.
Prato
, and
J. M.
Ball
, “
Ion migration and the role of preconditioning cycles in the stabilization of the J–V characteristics of inverted hybrid perovskite solar cells
,”
Adv. Energy Mater.
6
,
1501453
(
2015
).
47.
W.
Qiu
,
T.
Merckx
,
M.
Jaysankar
,
C.
Masse de la Huerta
,
L.
Rakocevic
,
W.
Zhang
,
U. W.
Paetzold
,
R.
Gehlhaar
,
L.
Froyen
,
J.
Poortmans
 et al., “
Pinhole-free perovskite films for efficient solar modules
,”
Energy Environ. Sci.
9
,
484
489
(
2016
).
48.
Y.
Dkhissi
,
H.
Weerasinghe
,
S.
Meyer
,
I.
Benesperi
,
U.
Bach
,
L.
Spiccia
,
R. A.
Caruso
, and
Y.-B.
Cheng
, “
Parameters responsible for the degradation of CH3NH3PbI3-based solar cells on polymer substrates
,”
Nano Energy
22
,
211
222
(
2016
).
49.
M.-C.
Jung
,
S. R.
Raga
,
L. K.
Ono
, and
Y.
Qi
, “
Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering
,”
Sci. Rep.
5
,
9863
(
2015
).
50.
J. F.
Galisteo-López
,
M.
Anaya
,
M. E.
Calvo
, and
H.
Míguez
, “
Environmental effects on the photophysics of organic–inorganic halide perovskites
,”
J. Phys. Chem. Lett.
6
,
2200
2205
(
2015
).
51.
D.
Bryant
,
N.
Aristidou
,
S.
Pont
,
I.
Sanchez-Molina
,
T.
Chotchunangatchaval
,
S.
Wheeler
,
J. R.
Durrant
, and
S. A.
Haque
, “
Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells
,”
Energy Environ. Sci.
9
,
1655
1660
(
2016
).
52.
B.
Li
,
Y.
Li
,
C.
Zheng
,
D.
Gao
, and
W.
Huang
, “
Advancements in the stability of perovskite solar cells: Degradation mechanisms and improvement approaches
,”
RSC Adv.
6
,
38079
38091
(
2016
).
53.
J.
Carrillo
,
A.
Guerrero
,
S.
Rahimnejad
,
O.
Almora
,
I.
Zarazua
,
E.
Mas-Marza
,
J.
Bisquert
, and
G.
Garcia-Belmonte
, “
Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells
,”
Adv. Energy Mater.
6
,
1502246
(
2016
).
54.
C.
Eames
,
J. M.
Frost
,
P. R. F.
Barnes
,
B. C.
O'Regan
,
A.
Walsh
, and
M. S.
Islam
, “
Ionic transport in hybrid lead iodide perovskite solar cells
,”
Nat. Commun.
6
,
7497
(
2015
).
55.
D. W.
deQuilettes
,
W.
Zhang
,
V. M.
Burlakov
,
D. J.
Graham
,
T.
Leijtens
,
A.
Osherov
,
V.
Bulovic
,
H. J.
Snaith
,
D. S.
Ginger
, and
S. D.
Stranks
, “
Photo-induced halide redistribution in organic-inorganic perovskite films
,”
Nat. Commun.
7
,
11683
(
2016
).

Supplementary Material

You do not currently have access to this content.