In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

1.
D.
Bhowmik
,
L.
You
, and
S.
Salahuddin
,
Nat. Nanotechnol.
9
,
59
(
2014
).
2.
B.
Behin-Aein
,
D.
Datta
,
S.
Salahuddin
, and
S.
Datta
,
Nat. Nanotechnol.
5
,
266
(
2010
).
3.
S.
Salahuddin
and
S.
Datta
, “
Self consistent simulation of hybrid semiconductor devices
,”
International Electron Devices Meeting
, San Fransisco, CA, USA, December
2006
, pp.
1
4
.
4.
L.
Liu
,
C. F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Science
336
,
555
(
2012
).
5.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
,
146802
(
2005
).
6.
B. A.
Bernevig
,
T. L.
Hughes
, and
S. C.
Zhang
,
Science
314
,
1757
(
2006
).
7.
A. R.
Mellnik
,
J. S.
Lee
,
A.
Richardella
,
J. L.
Grab
,
P. J.
Mintun
,
M. H.
Fischer
,
A.
Vaezi
,
A.
Manchon
,
E.-A.
Kim
,
N.
Samarth
, and
D. C.
Ralph
,
Nature
511
,
449
(
2014
).
8.
X. L.
Qi
and
S. C.
Zhang
,
Phys. Today
63
(
1
),
33
(
2010
).
9.
Y.
Lu
and
J.
Guo
,
Appl. Phys. Lett.
102
,
073106
(
2013
).
10.
U.
Roy
,
R.
Dey
,
T.
Pramanik
,
B.
Ghosh
,
L. F.
Register
, and
S. K.
Banerjee
,
J. Appl. Phys.
117
,
163906
(
2015
).
11.
J. T.
Heron
,
M.
Trassin
,
K.
Ashraf
,
M.
Gajek
,
Q.
He
,
S. Y.
Yang
,
D. E.
Nikonov
,
Y.
Chu
,
S.
Salahuddin
, and
R.
Ramesh
,
Phys. Rev. Lett.
107
,
217202
(
2011
).
12.
T.
Pramanik
,
U.
Roy
,
L. F.
Register
, and
S. K.
Banerjee
,
IEEE Trans. Nanotechnol.
14
(
5
),
883
(
2015
).
13.
J. J.
Zhu
,
D. X.
Yao
,
S. C.
Zhang
, and
K.
Chang
,
Phys. Rev. Lett.
106
,
097201
(
2011
).
14.
I.
Garate
and
M.
Franz
,
Phys. Rev. B
81
,
172408
(
2010
).
15.
S.
Mangin
,
Y.
Henry
,
D.
Ravelosona
,
J. A.
Katine
, and
E. E.
Fullerton
,
Appl. Phys. Lett.
94
,
012502
(
2009
).
16.
A.
Banerjee
and
B.
Ghosh
,
J. Comput. Electron.
12
,
476
(
2013
).
17.
T. L.
Gilbert
,
IEEE Trans. Magn.
40
,
3443
(
2004
).
18.
A.
Aharoni
,
J. Appl. Phys.
83
,
3432
(
1998
).
19.
M. K.
Niranjan
,
C. G.
Duan
,
S. S.
Jaswaland
, and
E. Y.
Tsymbal
,
Appl. Phys. Lett.
96
,
222504
(
2010
).
20.
P.
Zhao
,
R. M.
Feenstra
,
G.
Guand
, and
D.
Jena
,
IEEE Trans. Electron Devices
60
(
3
),
951
(
2013
).
21.
R. F.
Freitas
and
W. W.
Wilcke
,
IBM J. Res. Dev.
52
,
439
(
2008
).
22.
See www.itrs.net for International Technology Roadmap for Semiconductor specifications.
You do not currently have access to this content.