High-pressure plasmas have historically been used in thermionic energy converters both to reduce the electrode workfunctions and to mitigate the space-charge effect. The behavior of such devices has been studied extensively, but low-pressure thermionic converters are far less understood. Advances in nanotechnology, such as the possibility to intercalate nanomaterials-based electrodes with alkali metals in order to reduce workfunction, may alleviate the need for high gas pressures; low-pressure devices may thus play a significant role in future if they can address the space-charge problem. Here, we develop the physics of low-pressure thermionic converters by solving the Vlasov-Poisson system of equations self-consistently. We demonstrate that various possibilities arise due to intricate interactions between the spatially varying electron and ion concentrations, leading to phenomena such as plasma oscillations at higher ion fluxes. We show that even a relatively low ion flux density (∼5×104 times the flux density of electrons) reduces space-charge significantly and increases the electron current density by a factor of 7. We further extend the model by including electron and ion emission from both the cathode and anode electrodes.

1.
T. L.
Westover
,
A. D.
Franklin
,
B. A.
Cola
,
T. S.
Fisher
, and
R. G.
Reifenberger
, “
Photo- and thermionic emission from potassium-intercalated carbon nanotube arrays
,”
J. Vac. Sci. Technol. B Microelectron. Nanometer Struct.
28
(
2
),
423
434
(
2010
).
2.
V. S.
Robinson
,
T. S.
Fisher
,
J. A.
Michel
, and
C. M.
Lukehart
, “
Work function reduction of graphitic nanofibers by potassium intercalation
,”
Appl. Phys. Lett.
87
(
6
),
61501
(
2005
).
3.
A. H.
Khoshaman
,
H. D. E.
Fan
,
A. T.
Koch
,
N. H.
Leung
, and
A.
Nojeh
, “
Localized light induced thermionic emission from intercalated carbon nanotube forests
,” in
27th International Vacuum Nanoelectronics Conference (IVNC)
(
2014
), pp.
59
60
.
4.
S.
Meir
,
C.
Stephanos
,
T. H.
Geballe
, and
J.
Mannhart
, “
Highly-efficient thermoelectronic conversion of solar energy and heat into electricpower
,”
J. Renewable Sustainable Energy
5
(
4
),
43127
(
2013
).
5.
J. R.
Smith
,
G. L.
Bilbro
, and
R. J.
Nemanich
, “
Considerations for a high-performance thermionic energy conversion device based on a negative electron affinity emitter
,”
Phys. Rev. B
76
(
24
),
245327
(
2007
).
6.
A.
Khoshaman
,
H. D. E.
Fan
,
A.
Koch
,
G.
Sawatzky
, and
A.
Nojeh
, “
Thermionics, thermoelectrics, and nanotechnology: New possibilities for old ideas
,”
IEEE Nanotechnol. Mag.
8
(
2
),
4
15
(
2014
).
7.
G. N.
Hatsopoulos
and
E. P.
Gyftopoulos
,
Thermionic Energy Conversion
(
MIT Press
,
1973
), Vol. 1.
8.
N. S.
Rasor
, “
Thermionic energy conversion plasmas
,”
IEEE Trans. Plasma Sci.
19
(
6
),
1191
1208
(
1991
).
9.
G. N.
Hatsopoulos
and
E. P.
Gyftopoulos
,
Thermionic Energy Conversion - Vol. 2: Theory, Technology, and Application
(
MIT Press
,
1979
).
10.
CRC Handbook of Chemistry and Physics
, 93rd ed., edited by
W. M.
Haynes
(
CRC Press
,
2012
).
11.
J. A.
Bittencourt
,
Fundamentals of Plasma Physics
(
Springer
,
New York
,
2004
).
12.
P. L.
Auer
, “
Potential distributions in a low‐pressure thermionic converter
,”
J. Appl. Phys.
31
(
12
),
2096
2103
(
1960
).
13.
R. G.
McIntyre
, “
Extended space‐charge theory in low‐pressure thermionic converters
,”
J. Appl. Phys.
33
(
8
),
2485
2489
(
1962
).
14.
A. H.
Khoshaman
and
A.
Nojeh
, “
Classical momentum gap for electron transport in vacuum and consequences for space charge in thermionic converters with a grid electrode
,”
J. Vac. Sci. Technol. B
34
(
4
),
40610
(
2016
).
15.
A. H.
Khoshaman
and
A.
Nojeh
, “
A self-consistent approach to the analysis of thermionic devices
,”
J. Appl. Phys.
119
(
4
),
44902
(
2016
).
16.
A. H.
Khoshaman
,
A. T.
Koch
,
M.
Chang
,
H. D. E.
Fan
,
M. V.
Moghaddam
, and
A.
Nojeh
, “
Nanostructured thermionics for conversion of light to electricity: Simultaneous extraction of device parameters
,”
IEEE Trans. Nanotechnol.
14
(
4
),
624
632
(
2015
).
17.
A. H.
Khoshaman
,
M.
Chang
, and
A.
Nojeh
, “
Extraction of multiple parameters of a light-activated thermionic cathode with a single type of experiment
,” in
26th International Vacuum Nanoelectronics Conference (IVNC)
(
2013
), pp.
1
2
.
18.
A. H.
Khoshaman
and
A.
Nojeh
, “
A comprehensive approach to the analysis of nano-thermionic convertors through particle tracing
,” in
28th International Vacuum Nanoelectronics Conference (IVNC)
(
2015
), pp.
36
37
.
You do not currently have access to this content.