We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

1.
M. H.
Morsy
, “
Review and recent developments of laser ignition for internal combustion engines applications
,”
Renewable Sustainable Energy Rev.
16
(
7
),
4849
4875
(
2012
).
2.
J. D.
Dale
,
M. D.
Checkel
, and
P. R.
Smy
, “
Application of high energy ignition systems to engines progress
,”
Energy Combust. Sci.
23
(
5
),
379
398
(
1997
).
3.
M.
Weinrotter
,
H.
Kopecek
, and
E.
Wintner
, “
Laser ignition of engines
,”
Laser Phys.
15
(
7
),
947
953
(
2005
).
4.
S. A.
O'Briant
,
S. B.
Gupta
, and
S. S.
Vasu
, “
Review: Laser ignition for aerospace propulsion
,”
Propul. Power Res.
5
,
1
21
(
2016
).
5.
T. X.
Phuoc
, “
Laser-induced spark ignition fundamental and applications
,”
Opt. Lasers Eng.
44
(
5
),
351
397
(
2006
).
6.
R.
Tambay
and
R. K.
Thareja
, “
Laser induced breakdown study of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm
,”
J. Appl. Phys.
70
,
2890
2892
(
1991
).
7.
S.
Lorenz
,
M.
Bärwinkel
,
R.
Stäglich
,
W.
Mülbauer
, and
D.
Brüggeman
, “
Pulse train ignition with passively Q-switched laser spark plugs
,”
Int. J. Engine Res.
17
,
139
150
(
2016
).
8.
D. K.
Srivastava
,
E.
Wintner
, and
A. K.
Agarwal
, “
Effect of focal size on the laser ignition of compressed natural gas fueled engine
,”
Opt. Lasers Eng.
58
,
67
79
(
2014
).
9.
D. K.
Srivastava
,
E.
Wintner
, and
A. K.
Agarwal
, “
Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine
,”
Opt. Eng.
53
(
5
),
056120
(
2014
).
10.
H.
Kofler
,
J.
Tauer
,
G.
Tartar
,
K.
Iskra
,
J.
Klausner
,
G.
Herdin
, and
E.
Wintner
, “
An innovative solid-state laser for engine ignition
,”
Laser Phys. Lett.
4
(
4
),
322
327
(
2007
).
11.
H.
Sakai
,
H.
Kan
, and
T.
Taira
, “
>1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser
,”
Opt. Express
16
(
24
),
19891
19899
(
2008
).
12.
M.
Tsunekane
,
T.
Inohara
,
A.
Ando
,
N.
Kido
,
K.
Kanehara
, and
T.
Taira
, “
High peak power, passively Q-switched microlaser for ignition of engines
,”
IEEE J. Quantum Electron.
46
(
2
),
277
284
(
2010
).
13.
N.
Pavel
,
M.
Tsunekane
, and
T.
Taira
, “
Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition
,”
Opt. Express
19
(
10
),
9378
9384
(
2011
).
14.
S.
Lorenz
,
M.
Bärwinkel
,
P.
Heinz
,
S.
Lehmann
,
W.
Mühlbauer
, and
D.
Brüggemann
, “
Characterization of energy transfer for passively Q-switched laser ignition
,”
Opt. Express
23
(
3
),
2647
2659
(
2015
).
15.
C.
Manfletti
and
G.
Kroupa
, “
Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser
,”
Opt. Express
21
(
s. 6
),
A1126
A1139
(
2013
).
16.
Y.
Ma
,
X.
Li
,
X.
Yu
,
R.
Fan
,
R.
Yan
,
J.
Peng
,
X.
Xu
,
R.
Sun
, and
D.
Chen
, “
A novel miniaturized passively Q-switched pulse-burst laser for engine ignition
,”
Opt. Express
22
(
20
),
24655
24665
(
2014
).
17.
Y.
Ma
,
Y.
He
,
X.
Yu
,
X.
Li
,
J.
Li
,
R.
Yan
,
J.
Peng
,
X.
Zhang
,
R.
Sun
,
Y.
Pan
, and
D.
Chen
, “
Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping
,”
Opt. Express
23
(
19
),
24955
24961
(
2015
).
18.
T.
Dascalu
and
N.
Pavel
, “
High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser
,”
Laser Phys.
19
(
11
),
2090
2095
(
2009
).
19.
N.
Pavel
,
T.
Dascalu
,
G.
Salamu
,
M.
Dinca
,
N.
Boicea
, and
A.
Birtas
, “
Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices
,”
Opt. Express
23
(
26
),
33028
33037
(
2015
).
20.
C.
Jauregui
,
J.
Limpert
, and
A.
Tünnermann
, “
High-power fiber lasers
,”
Nat. Photonics
7
,
861
867
(
2013
).
21.
T.
Theeg
,
C.
Ottenhues
,
H.
Sayinc
,
J.
Neumann
, and
D.
Kracht
, “
Core-pumped single-frequency fiber amplifier with an output power of 158 W
,”
Opt. Lett
41
(
1
),
9
12
(
2016
).
22.
L.
Lago
,
D.
Bigourd
,
A.
Mussot
,
M.
Douay
, and
E.
Hugonnot
, “
High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber
,”
Opt. Lett.
36
(
5
),
734
736
(
2011
).
23.
C. D.
Brooks
and
F.
Di Teodoro
, “
1 mJ energy, 1 MW peak-power, 10 W average power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier
,”
Opt. Express
13
(
22
),
8999
9002
(
2005
).
24.
F.
Di Teodoro
,
P.
Belden
,
P.
Ionov
, and
N.
Werner
, “
High-power ns-pulse fiber laser sources for remote sensors
,”
Opt. Fiber Technol.
20
(
6
),
688
693
(
2014
).
25.
F.
Stutzki
,
F.
Jansen
,
A.
Liem
,
C.
Jauregui
,
J.
Limpert
, and
A.
Tünnermann
, “
26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality
,”
Opt. Lett.
37
(
6
),
1073
1075
(
2012
).
26.
G. P.
Agrawal
,
Nonlinear Fiber Optics
, 5th ed. (
Elsevier/Academic Press
,
Amsterdam
,
2013
).
27.
J.-P.
Fève
,
P. E.
Schrader
,
R. L.
Farrow
, and
D. A. V.
Kliner
, “
Four-wave mixing in nanosecond pulsed fiber amplifiers
,”
Opt. Express
15
(
8
),
4647
4662
(
2007
).
28.
H.
Zhang
,
R.
Tao
,
P.
Zhou
,
X.
Wang
, and
X.
Xu
, “
1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm
,”
IEEE Photonics Technol. Lett.
27
(
6
),
628
630
(
2015
).
29.
C. J.
Koester
and
E.
Snitzer
, “
Amplification in a fiber laser
,”
Appl. Opt.
3
(
10
),
1182
1186
(
1964
).
30.
C. R.
Giles
and
E.
Desurvire
, “
Modeling Erbium-doped fiber amplifiers
,”
J. Lightwave Technol.
9
(
2
),
271
283
(
1991
).
31.
Y.
Wang
, “
Optimization of pulse amplification in Ytterbium-doped double-clad fiber amplifiers
,”
J. Lightwave Technol.
23
(
6
),
2139
(
2005
).
32.
A. E.
Siegman
, “
Laser pumping and population inversion
,” in
Lasers
(
Academic
,
1986
), pp.
243
263
.
33.
F.
Estable
, “
Amplification régénérative et multipassage d'impulsions lumineuses dans des milieux solides (YAG dopé néodyme, alexandrite, saphir dopé titane)
,” Ph.D. thesis (
Université Paris Sud
Paris XI
,
1992
); HAL Id: pastel-00716147, version 1.
34.
J.
Dong
,
A.
Rapaport
,
M.
Bass
,
F.
Szipocs
, and
K.
Ueda
, “
Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals
,”
Phys. Status Solidi A
202
,
2565
2573
(
2005
).
35.
A.
Rapaport
,
S.
Zhao
,
G.
Xiao
,
A.
Howard
, and
M.
Bass
, “
Temperature Dependence of the 1.06 μm stimulated emission cross section of neodymium in YAG and in GSGG
,”
Appl. Opt.
41
(
33
),
7052
7057
(
2002
).
36.
Y.
Sato
and
T.
Taira
, “
Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials
,”
Opt. Mater. Express
2
(
8
),
1076
1087
(
2012
).
37.
N.
Pavel
,
M.
Tsunekane
, and
T.
Taira
, “
Enhancing performances of a passively Q-switched Nd:YAG/Cr4+:YAG microlaser with a volume Bragg grating output coupler
,”
Opt. Lett.
35
(
10
),
1617
1619
(
2010
).
38.
G.
Linassier
,
A.
Bruyat
,
P.
Villedieu
,
N.
Bertier
,
C.
Laurenta
,
O.
Rouzaud
,
R.
Lecourt
,
H.
Verdier
, and
G.
Lavergne
, “
Application of numerical simulations to predict aircraft combustor ignition
,”
C. R. Mec.
341
,
201
210
(
2013
).
39.
A.
Ballal
and
A. H.
Lefebvre
, “
Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air
,” in
Eighteenth Symposium (International) on Combustion
(
1981
), Vol.
18
(
1
), pp.
1737
1747
.
40.
J. E.
Rothenberg
, “
Ultrafast picket fence pulse trains to enhance frequency conversion of shaped inertial confinement fusion laser pulses
,”
Appl. Opt.
39
(
36
),
6931
6938
(
2000
).
41.
C.
Dumitrache
,
A. P.
Yalin
, and
M. N.
Shneider
, “
Laser generated plasma using a dual pulse approach with application to laser ignition
,” AIAA Paper No. 2014-2071, 2014.
You do not currently have access to this content.