The phase diagrams of the Ti-Zn-N, Zr-Zn-N, and Hf-Zn-N systems are determined using large-scale high-throughput density functional calculations. Thermodynamically stable ordered phases of TiZnN2, ZrZnN2, and HfZnN2 have been found to be promising candidates in piezoelectric devices/applications for energy harvesting. The identified stable phase of TiZnN2 is an ordered wurtzite superstructure, and the stable phases of ZrZnN2 and HfZnN2 have a layered structure with alternating tetrahedral ZnN and octahedral (Zr, Hf)N layers. All of the TMZnN2 (TM = Ti, Zn, Hf) structures exhibit electronic bandgaps and large piezoelectric constants, d33TiZnN2=14.21,d24ZrZnN2=26.15, and d24HfZnN2=21.99pC/N. The strong piezoelectric responses and their thermodynamical stability make materials with these phases promising candidates for piezoelectric applications.

1.
K. M.
Lakin
,
IEEE Microwave Mag.
4
,
61
(
2003
).
2.
K. M.
Lakin
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
707
(
2005
).
3.
C.-B.
Eom
and
S.
Trolier-McKinstry
,
MRS Bull.
37
,
1007
(
2012
).
4.
G.
Piazza
,
V.
Felmetsger
,
P.
Muralt
,
R. H.
Olsson
 III
, and
R.
Ruby
,
MRS Bull.
37
,
1051
(
2012
).
5.
M.
Akiyama
,
T.
Kamohara
,
K.
Kano
,
A.
Teshigahara
,
Y.
Takeuchi
, and
N.
Kawahara
,
Adv. Mater.
21
,
593
(
2009
).
6.
F.
Tasnádi
,
B.
Alling
,
C.
Höglund
,
G.
Wingqvist
,
J.
Birch
,
L.
Hultman
, and
I. A.
Abrikosov
,
Phys. Rev. Lett.
104
,
137601
(
2010
).
7.
A.
Zukauskaite
,
C.
Tholander
,
J.
Palisaitis
,
P. O. Å.
Persson
,
V.
Darakchieva
,
N. B.
Sedrine
,
F.
Tasnádi
,
B.
Alling
,
J.
Birch
, and
L.
Hultman
,
J. Phys. D: Appl. Phys.
45
,
422001
(
2012
).
8.
C.
Tholander
,
I. A.
Abrikosov
,
L.
Hultman
, and
F.
Tasnádi
,
Phys. Rev. B
87
,
094107
(
2013
).
9.
P.
Mayrhofer
,
H.
Riedl
,
H.
Euchner
,
M.
Stöger-Pollach
,
P.
Mayrhofer
,
A.
Bittner
, and
U.
Schmid
,
Acta Mater.
100
,
81
(
2015
).
10.
T.
Yokoyama
,
Y.
Iwazaki
,
Y.
Onda
,
T.
Nishihara
,
Y.
Sasajima
, and
M.
Ueda
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
1322
(
2014
).
11.
T.
Yokoyama
,
Y.
Iwazaki
,
Y.
Onda
,
Y.
Sasajima
,
T.
Nishihara
, and
M.
Ueda
, in
2014 IEEE International Ultrasonics Symposium
(
IEEE
,
Chicago
,
2014
), pp.
281
288
.
12.
Y.
Iwazaki
,
T.
Yokoyama
,
T.
Nishihara
, and
M.
Ueda
,
Appl. Phys. Express
8
,
061501
(
2015
).
13.
C.
Tholander
,
F.
Tasnádi
,
I. A.
Abrikosov
,
L.
Hultman
,
J.
Birch
, and
B.
Alling
,
Phys. Rev. B
92
,
174119
(
2015
).
14.
P.
Eklund
,
S.
Kerdsongpanya
, and
B.
Alling
,
J. Mater. Chem. C
4
,
3905
(
2016
).
15.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
16.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
17.
R.
Armiento
,
B.
Kozinsky
,
M.
Fornari
, and
G.
Ceder
,
Phys. Rev. B—Condens. Matter Mater. Phys.
84
,
014103
(
2011
).
18.
R.
Armiento
,
B.
Kozinsky
,
G.
Hautier
,
M.
Fornari
, and
G.
Ceder
,
Phys. Rev. B
89
,
134103
(
2014
).
19.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
20.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
22.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
23.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B Condens. Matter
54
,
11169
(
1996
).
24.
25.
G.
Hautier
,
S. P.
Ong
,
A.
Jain
,
C. J.
Moore
, and
G.
Ceder
,
Phys. Rev. B: Condens. Matter Mater. Phys.
85
,
155208
(
2012
).
26.
S.
Kirklin
,
J. E.
Saal
,
B.
Meredig
,
A.
Thompson
,
J. W.
Doak
,
M.
Aykol
,
S.
Rühl
, and
C.
Wolverton
,
npj Computational Materials
1
,
15010
(
2015
).
27.
Open Materials Database (
2016
), http://openmaterialsdb.se.
28.
A.
Belsky
,
M.
Hellenbrandt
,
V. L.
Karen
, and
P.
Luksch
,
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
364
(
2002
);
G.
Bergerhoff
,
R.
Hundt
,
R.
Sievers
, and
I. D.
Brown
,
J. Chem. Inf. Comput. Sci.
23
,
66
(
1983
);
Inorganic Crystal Structure Database (ICSD), https://icsd.fiz-karlsruhe.de.
29.
R. T.
Downs
and
M.
Hall-Wallace
,
Am. Mineral.
88
,
247
(
2003
).
30.
S.
Gražulis
,
D.
Chateigner
,
R. T.
Downs
,
A. F. T.
Yokochi
,
M.
Quirós
,
L.
Lutterotti
,
E.
Manakova
,
J.
Butkus
,
P.
Moeck
, and
A.
Le Bail
,
J. Appl. Crystallogr.
42
,
726
(
2009
).
31.
S.
Gražulis
,
A.
Daškevič
,
A.
Merkys
,
D.
Chateigner
,
L.
Lutterotti
,
M.
Quirós
,
N. R.
Serebryanaya
,
P.
Moeck
,
R. T.
Downs
, and
A.
Le Bail
,
Nucleic Acids Res.
40
,
420
(
2012
).
32.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
,
APL Mater.
1
,
011002
(
2013
).
33.
S. P.
Ong
,
L.
Wang
,
B.
Kang
, and
G.
Ceder
,
Chem. Mater.
20
,
1798
(
2008
).
34.
S. P.
Ong
,
A.
Jain
,
G.
Hautier
,
B.
Kang
, and
G.
Ceder
,
Electrochem. Commun.
12
,
427
(
2010
).
35.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
,
Comput. Mater. Sci.
68
,
314
(
2013
).
36.
L.
Wang
,
T.
Maxisch
, and
G.
Ceder
,
Phys. Rev. B
73
,
195107
(
2006
).
37.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
38.
S.
Baroni
and
R.
Resta
,
Phys. Rev. B
33
,
7017
(
1986
).
39.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B: Condens. Matter Mater. Phys.
73
,
045112
(
2006
).
40.
D.
Vanderbilt
,
J. Phys. Chem. Solids
61
,
147
(
2000
).
41.
C. E.
Dreyer
,
A.
Janotti
,
C. G.
Van de Walle
, and
D.
Vanderbilt
,
Phys. Rev. X
6
,
021038
(
2016
); e-print arXiv:1605.07629.
42.
R.
Armiento
 et al,
The High-Throughput Toolkit (httk)
(
2012–2016
); available at http://httk.openmaterialsdb.se/.
43.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
44.
R.
Ayouchi
,
C.
Casteleiro
,
L.
Santos
, and
R.
Schwarz
,
Phys. Status Solidi
7
,
2294
(
2010
).
45.
M.
Dahlqvist
,
B.
Alling
, and
J.
Rosén
,
Phys. Rev. B
81
,
220102
(
2010
).
46.

Supplementary Material

You do not currently have access to this content.