The ScN- and CrN-based transition-metal nitrides have recently emerged as a novel and unexpected class of materials for thermoelectrics. These materials constitute well-defined model systems for investigating mixing thermodynamics, phase stability, and band structure aiming for property tailoring. Here, we demonstrate an approach to tailor their thermoelectric properties by solid solutions. The trends in mixing thermodynamics and densities-of-states (DOS) of rocksalt-Cr1-xScxN solid solutions (0 ≤ x ≤ 1) are investigated by first-principles calculations, and Cr1-xScxN thin films are synthesized by magnetron sputtering. Pure CrN exhibits a high power factor, 1.7 × 10−3 W m−1 K−2 at 720 K, enabled by a high electron concentration thermally activated from N vacancies. Disordered rocksalt-Cr1-xScxN solid solutions are thermodynamically stable, and calculated DOS suggest the possibility for power-factor improvement by Sc3d orbital delocalization on Cr3d electrons giving decreasing electrical resistivity, while localized Cr3d orbitals with a large DOS slope may yield an improved Seebeck coefficient. Sc-rich solid solutions show a large improvement in power factor compared to pure ScN, and all films have power factors above that expected from the rule-of-mixture. These results corroborate the theoretical predictions and enable tailoring and understanding of structure-transport-property correlations of Cr1-xScxN.

1.
T. M.
Tritt
,
Annu. Rev. Mater. Res.
41
,
433
(
2011
).
2.
A.
Shakouri
,
Annu. Rev. Mater. Res.
41
,
399
(
2011
).
3.
L. E.
Toth
,
Transition Metal Carbies and Nitrides
(
Academic Press
,
New York/London
,
1971
).
4.
D.
Gall
,
C.-S.
Shin
,
T.
Spila
,
M.
Odén
,
M. J. H.
Senna
,
J. E.
Greene
, and
I.
Petrov
,
J. Appl. Phys.
91
,
3589
(
2002
).
5.
J.
Lin
,
N.
Zhang
,
W. D.
Sproul
, and
J. J.
Moore
,
Surf. Coat. Technol.
206
,
3283
(
2012
).
6.
J.
Lin
,
W. D.
Sproul
, and
J. J.
Moore
,
Surf. Coat. Technol.
206
,
2474
(
2012
).
7.
C.
Lorenzo-Martin
,
O.
Ajayi
,
A.
Erdemir
,
G. R.
Fenske
, and
R.
Wei
,
Wear
302
,
963
(
2013
).
8.
P.
Eklund
,
S.
Kerdsongpanya
, and
B.
Alling
,
J. Mater. Chem. C
4
,
3905
(
2016
).
9.
M.
Chen
,
S.
Wang
,
J.
Zhang
,
D.
He
, and
Y.
Zhao
,
Chem.—Eur. J.
18
,
15459
(
2012
).
10.
S.
Wang
,
X.
Yu
,
J.
Zhang
,
M.
Chen
,
J.
Zhu
,
L.
Wang
,
D.
He
,
Z.
Lin
,
R.
Zhang
,
K.
Leinenweber
, and
Y.
Zhao
,
Phys. Rev. B
86
,
064111
(
2012
).
11.
P.
Subramanya Herle
,
M. S.
Hegde
,
N. Y.
Vasathacharya
,
S.
Philip
,
M. V.
Rama Rao
, and
T.
Sripathi
,
J. Solid State Chem.
134
,
120
(
1997
).
12.
J.
Lin
,
W. D.
Sproul
, and
J. J.
Moore
,
Mater. Lett.
89
,
55
(
2012
).
13.
C.
Petrogalli
,
L.
Montesano
,
M.
Gelfi
,
G. M.
La Vecchia
, and
L.
Solazzi
,
Surf. Coat. Technol.
258
,
878
(
2014
).
14.
C.
Constantin
,
M. B.
Haider
,
D.
Ingram
, and
A. R.
Smith
,
Appl. Phys. Lett.
85
,
6371
(
2004
).
15.
D.
Gall
,
I.
Petrov
,
N.
Hellgren
,
L.
Hultman
,
J. E.
Sundgren
, and
J. E.
Greene
,
J. Appl. Phys.
84
,
6034
(
1998
).
16.
V.
Rawat
,
Y. K.
Koh
,
D. G.
Cahill
, and
T. D.
Sands
,
J. Appl. Phys.
105
,
024909
(
2009
).
17.
S. W.
King
,
R. F.
Davis
, and
R. J.
Nemanich
,
J. Vac. Sci. Technol. A
32
,
061504
(
2014
).
18.
C. X.
Quintela
,
F.
Rivadulla
, and
J.
Rivas
,
Appl. Phys. Lett.
94
,
152103
(
2009
).
19.
C. X.
Quintela
,
B.
Rodríguez-González
, and
F.
Rivadulla
,
Appl. Phys. Lett.
104
,
022103
(
2014
).
20.
O.
Jankovský
,
D.
Sedmidubský
,
Š.
Huber
,
P.
Šimek
, and
Z.
Sofer
,
J. Eur. Ceram. Soc.
34
,
4131
(
2014
).
21.
X. Y.
Zhang
,
J. S.
Chawla
,
B. M.
Howe
, and
D.
Gall
,
Phys. Rev. B
83
,
165205
(
2011
).
22.
D.
Gall
,
C.-S.
Shin
,
R. T.
Haasch
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
91
,
5882
(
2002
).
23.
A.
Herwadkar
and
W. R. L.
Lambrecht
,
Phys. Rev. B
79
,
035125
(
2009
).
24.
A. S.
Botana
,
F.
Tran
,
V.
Pardo
,
D.
Baldomir
, and
P.
Blaha
,
Phys. Rev. B
85
,
235118
(
2012
).
25.
S.
Kerdsongpanya
,
N.
Van Nong
,
N.
Pryds
,
A.
Zukauskaite
,
J.
Jensen
,
J.
Birch
,
J.
Lu
,
L.
Hultman
,
G.
Wingqvist
, and
P.
Eklund
,
Appl. Phys. Lett.
99
,
232113
(
2011
).
26.
P. V.
Burmistrova
,
J.
Maassen
,
T.
Favaloro
,
B.
Saha
,
S.
Salamat
,
Y. R.
Koh
,
M. S.
Lundstrom
,
A.
Shakouri
, and
T. D.
Sands
,
J. Appl. Phys.
113
,
153704
(
2013
).
27.
S.
Kerdsongpanya
,
B.
Alling
, and
P.
Eklund
,
Phys. Rev. B
86
,
195140
(
2012
).
28.
S.
Kerdsongpanya
,
B.
Alling
, and
P.
Eklund
,
J. Appl. Phys.
114
,
073512
(
2013
).
29.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
30.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
31.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
32.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
33.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
34.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
(
1998
).
35.
B.
Alling
,
T.
Marten
, and
I. A.
Abrikosov
,
Phys. Rev. B
82
,
184430
(
2010
).
36.
A.
Zunger
,
S. H.
Wei
,
L. G.
Ferreira
, and
J. E.
Bernard
,
Phys. Rev. Lett.
65
,
353
(
1990
).
37.
A. V.
Ruban
and
I. A.
Abrikosov
,
Rep. Prog. Phys.
71
,
046501
(
2008
).
38.
B.
Alling
,
A. V.
Ruban
,
A.
Karimi
,
O. E.
Peil
,
S. I.
Simak
,
L.
Hultman
, and
I. A.
Abrikosov
,
Phys. Rev. B
75
,
045123
(
2007
).
39.
B.
Alling
,
Phys. Rev. B
89
,
085112
(
2014
).
40.
B.
Alling
,
C.
Höglund
,
R.
Hall-Wilton
, and
L.
Hultman
,
Appl. Phys. Lett.
98
,
241911
(
2011
).
41.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
42.
P.
Steneteg
,
B.
Alling
, and
I. A.
Abrikosov
,
Phys. Rev. B
85
,
144404
(
2012
).
43.
B.
Alling
,
L.
Hultberg
,
L.
Hultman
, and
I. A.
Abrikosov
,
Appl. Phys. Lett.
102
,
031910
(
2013
).
44.
F.
Eriksson
,
G. A.
Johansson
,
H. M.
Hertz
, and
J.
Birch
,
Opt. Eng.
41
,
2903
(
2002
).
45.
M. S.
Janson
,
CONTES, Conversion of Time-Energy Spectra, a Program for ERDA Data Analysis
(
Uppsala University
,
2004
).
46.
J.
Jensen
,
D.
Martin
,
A.
Surpi
, and
T.
Kubart
,
Nucl. Instrum. Methods B
268
,
1893
(
2010
).
47.
B.
Sun
and
Y. K.
Koh
,
Rev. Sci. Instrum.
87
,
064901
(
2016
).
48.
P.
Jiang
,
B.
Huang
, and
Y. K.
Koh
,
Rev. Sci. Instrum.
87
,
075101
(
2016
).
49.
B.
Huang
and
Y. K.
Koh
,
Carbon
105
,
268
(
2016
).
50.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
,
Appl. Phys. Lett.
107
,
091605
(
2015
).
51.
H.
Zhang
,
X.
Chen
,
Y.-D.
Jho
, and
A. J.
Minnich
,
Nano Lett.
16
,
1643
(
2016
).
52.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
53.
C.
Thomsen
,
H. T.
Grahn
,
H. J.
Maris
, and
J.
Tauc
,
Phys. Rev. B
34
,
4129
(
1986
).
54.
J. P.
De Luca
and
J. M.
Leitnaker
,
J. Am. Ceram. Soc.
56
,
126
(
1973
).
55.
B.
Saha
,
J.
Acharya
,
T. D.
Sands
, and
U. V.
Waghmare
,
J. Appl. Phys.
107
,
033715
(
2010
).
56.
A.
Wang
,
S.-L.
Shang
,
Y.
Du
,
L.
Chen
,
J.
Wang
, and
Z.-K.
Liu
,
J. Mater. Sci.
47
,
7621
(
2012
).
57.
N.
Shulumba
,
O.
Hellman
,
Z.
Raza
,
B. R.
Alling
,
J.
Barrirero
,
F.
Mücklich
,
I. A.
Abrikosov
, and
M.
Odén
, “
Lattice vibrations change the solid solubility of an alloy at high temperatures
,”
Phys. Rev. Lett.
117
,
205502
(
2016
).
58.
L.
Zhou
,
D.
Holec
, and
P. H.
Mayrhofer
,
J. Phys. D: Appl. Phys.
46
,
365301
(
2013
).
59.
B.
Alling
,
Phys. Rev. B
82
,
054408
(
2010
).
60.
M. A.
Moram
,
Z. H.
Barber
, and
C. J.
Humphreys
,
Thin Solid Films
516
,
8569
(
2008
).
61.
H. A. H.
Al-Brithen
,
A. R.
Smith
, and
D.
Gall
,
Phys. Rev. B
70
,
045303
(
2004
).
62.
H. A. H.
Al-Brithen
,
E. M.
Trifan
,
D. C.
Ingram
,
A. R.
Smith
, and
D.
Gall
,
J. Cryst. Growth
242
,
345
(
2002
).
63.
P. V.
Burmistrova
,
D. N.
Zakharov
,
T.
Favaloro
,
A.
Mohammed
,
E. A.
Stach
,
A.
Shakouri
, and
T. D.
Sands
,
J. Mater. Res.
30
,
626
(
2015
).
64.
E.
Mozafari
,
B.
Alling
,
P.
Steneteg
, and
I. A.
Abrikosov
,
Phys. Rev. B
91
,
094101
(
2015
).
65.
C. X.
Quintela
,
J. P.
Podkaminer
,
M. N.
Luckyanova
,
T. R.
Paudel
,
E. L.
Thies
,
D. A.
Hillsberry
,
D. A.
Tenne
,
E. Y.
Tsymbal
,
G.
Chen
,
C.-B.
Eom
, and
F.
Rivadulla
,
Adv. Mater.
27
,
3032
(
2015
).
66.
P.
Tomeš
,
D.
Logvinovich
,
J.
Hejtmánek
,
M. H.
Aguirre
, and
A.
Weidenkaff
,
Acta. Mater.
59
,
1134
(
2011
).
67.
N. F.
Mott
and
H.
Jones
,
The Theory of the Properties of Metals and Alloys
(
Dover Publications, Inc.
,
New York
,
1958
).
68.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
,
554
(
2008
).
69.
J. R.
Sootsman
,
H.
Kong
,
C.
Uher
,
J. J.
D'Angelo
,
C.-I.
Wu
,
T. P.
Hogan
,
T.
Caillat
, and
M. G.
Kanatzidis
,
Angew. Chem. Int. Ed.
47
,
8618
(
2008
).
70.
L. C.
De Jonghe
and
M. N.
Rahaman
, in
Handbook of Advanced Ceramics
, edited by
F.
Aldinger
,
N.
Claussen
,
R. M.
Spriggs
,
K.
Uchino
,
K.
Koumoto
, and
M.
Kaneno
(
Academic Press
,
Oxford
,
2003
), p.
187
.

Supplementary Material

You do not currently have access to this content.