In this paper, the effect of inclusion of phosphorous (at a concentration below 1%) on the high temperature characteristics (up to 300 °C) of the SiO2/SiC interface is investigated. Capacitance–voltage measurements taken for a range of frequencies have been utilized to extract parameters including flatband voltage, threshold voltage, effective oxide charge, and interface state density. The variation of these parameters with temperature has been investigated for bias sweeps in opposing directions and a comparison made between phosphorous doped and as-grown oxides. At room temperature, the effective oxide charge for SiO2 may be reduced by the phosphorous termination of dangling bonds at the interface. However, at high temperatures, the effective charge in the phosphorous doped oxide remains unstable and effects such as flatband voltage shift and threshold voltage shift dominate the characteristics. The instability in these characteristics was found to result from the trapped charges in the oxide (±1012 cm−3) or near interface traps at the interface of the gate oxide and the semiconductor (1012–1013 cm−2 eV−1). Hence, the performance enhancements observed for phosphorous doped oxides are not realised in devices operated at elevated temperatures.

1.
T.
Kimoto
,
Jpn. J. Appl. Phys., Part 1
54
,
40103
(
2015
).
2.
L. C.
Yu
,
G. T.
Dunne
,
K. S.
Matocha
,
K. P.
Cheung
,
J. S.
Suehle
, and
K.
Sheng
,
IEEE Trans. Device Mater. Reliab.
10
,
418
(
2010
).
3.
A.
Castellazzi
,
T.
Funaki
,
T.
Kimoto
, and
T.
Hikihara
,
Microelectron. Reliab.
52
,
2414
(
2012
).
4.
A.
Pérez-Tomás
,
P.
Godignon
,
N.
Mestres
, and
J.
Millán
,
Microelectron. Eng.
83
,
440
(
2006
).
5.
S.
Dhar
,
S.
Haney
,
L.
Cheng
,
S. R.
Ryu
,
A. K.
Agarwal
,
L. C.
Yu
, and
K. P.
Cheung
,
J. Appl. Phys.
108
,
054509
(
2010
).
6.
G.
Liu
,
A. C.
Ahyi
,
Y.
Xu
,
T.
Isaacs-Smith
,
Y. K.
Sharma
 et al,
IEEE Electron Device Lett.
34
,
181
(
2013
).
7.
Y.
Nanen
,
M.
Kato
,
J.
Suda
, and
T.
Kimoto
,
IEEE Trans. Electron Devices
60
,
1260
(
2013
).
8.
V.
Tilak
,
K.
Matocha
,
G.
Dunne
,
F.
Allerstam
, and
E. Ö.
Sveinbjornsson
,
IEEE Trans. Electron Devices
56
,
162
(
2009
).
9.
Y. K.
Sharma
,
A. C.
Ahyi
,
T.
Issacs-Smith
,
X.
Shen
, and
S. T.
Pantelides
,
Solid State Electron.
68
,
103
(
2012
).
10.
D.
Okamoto
,
H.
Yano
,
K.
Hirata
,
T.
Hatayama
, and
T.
Fuyuki
,
IEEE Electron Device Lett.
31
,
710
(
2010
).
11.
H.
Yano
,
T.
Hirao
,
T.
Kimoto
,
H.
Matsunami
,
K.
Asano
, and
Y.
Sugawara
,
IEEE Electron Device Lett.
20
,
611
(
1999
).
12.
H.
Yano
,
N.
Kanafuji
,
A.
Osawa
,
T.
Hatayama
, and
T.
Fuyuki
,
IEEE Trans. Electron Devices
62
,
324
(
2015
).
13.
E.
Okuno
,
T.
Sakakibara
,
S.
Onda
,
M.
Itoh
, and
T.
Uda
,
Phys. Rev. B
79
,
113302
(
2009
).
14.
S.
Salemi
,
A.
Akturk
,
S.
Potbhare
,
A.
Lelis
, and
N.
Goldsman
, in
Proceedings of 2011 International Semiconductor Device Research Symposium, ISDRS
(
2011
), pp.
1
2
.
15.
T.
Umeda
,
K.
Esaki
,
R.
Kosugi
,
K.
Fukuda
,
T.
Ohshima
,
N.
Morishita
, and
J.
Isoya
,
Appl. Phys. Lett.
99
,
142105
(
2011
).
16.
R.
Kosugi
,
T.
Umeda
, and
Y.
Sakuma
,
Appl. Phys. Lett.
99
,
182111
(
2011
).
17.
L. K.
Swanson
,
P.
Fiorenza
,
F.
Giannazzo
,
A.
Frazzetto
, and
F.
Roccaforte
,
Appl. Phys. Lett.
101
,
193501
(
2012
).
18.
P.
Fiorenza
,
F.
Giannazzo
,
M.
Vivona
,
A.
La Magna
, and
F.
Roccaforte
,
Appl. Phys. Lett.
103
,
153508
(
2013
).
19.
M. H.
Weng
,
A. D.
Murphy
,
D. T.
Clark
,
D. A.
Smith
, and
R. F.
Thompson
, in
HiTEN
(
2015
), pp.
33
36
.
20.
D. T.
Clark
,
R. F.
Thompson
,
A. E.
Murphy
,
D. A.
Smith
,
E. P.
Ramsay
,
R. A. R.
Young
,
C. T.
Ryan
,
S.
Wright
, and
A. B.
Horsfall
,
CMOS Circuits on Silicon Carbide for High Temperature Operation
(
Mater. Res. Soc. Symp. Proc.
,
2014
), Vol.
1693
.
21.
F.
Roccaforte
,
F.
Giannazzo
, and
V.
Raineri
,
J. Phys. D. Appl. Phys.
43
,
223001
(
2010
).
22.
J.
Campi
,
Y.
Shi
,
Y.
Luo
,
F.
Yan
, and
J. H.
Zhao
,
IEEE Trans. Electron Devices
46
,
511
(
1999
).
23.
T.
Kimoto
,
Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications
(
Wiley
,
2014
).
24.
N. G.
Wright
,
A. B.
Horsfall
, and
K.
Vassilevski
,
Mater. Today
11
,
16
(
2008
).
25.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
1982
).
26.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley
,
2005
).
27.
G.
Chung
,
C. C.
Tin
,
J. R.
Williams
,
K.
Mcdonald
, and
M.
Di Ventra
,
Appl. Phys. Lett.
76
,
1713
(
2000
).
28.
E. H.
Snow
and
B. E.
Deal
,
J. Electrochem. Soc.
113
,
263
(
1966
).
29.
D. L.
Griscom
,
E. J.
Friebele
,
K. J.
Long
, and
J. W.
Fleming
,
J. Appl. Phys.
54
,
3743
(
1983
).
30.
P. M.
Lenahan
,
C. A.
Billman
,
R.
Fuller
,
H.
Evans
,
W. H.
Speece
,
D.
DeCrosta
, and
R.
Lowry
,
IEEE Trans. Nucl. Sci.
44
,
1834
(
1997
).
31.
W. L.
Warren
,
M. R.
Shaneyfelt
,
D. M.
Fleetwood
,
P. S.
Winokur
, and
S.
Montague
,
IEEE Trans. Nucl. Sci.
42
,
1731
(
1995
).
32.
W. L.
Warren
,
M. R.
Shaneyfelt
,
D. M.
Fleetwood
, and
P. S.
Winokur
,
Appl. Phys. Lett.
67
,
995
(
1995
).
33.
A. J.
Lelis
,
D.
Habersat
,
R.
Green
,
A.
Ogunniyi
,
M.
Gurfinkel
,
J.
Suehle
, and
N.
Goldsman
,
IEEE Trans. Electron Devices
55
,
1835
(
2008
).
34.
S.
Sze
,
Semiconductor Devices: Physics and Technology
(
Wiley
,
2001
).
35.
D.
Lotfi
and
E.
Hatem
,
Nanoscale Res. Lett.
7
,
424
(
2012
).
36.
M.
Gurfinkel
,
J.
Suehle
,
J. B.
Bernstein
,
Y.
Shapira
,
A. J.
Lelis
,
D.
Habersat
, and
N.
Goldsman
,
IEEE International Integrated Reliability Workshop, Final Report No. 49
,
2006
.
37.
V.
Tilak
,
K.
Matocha
, and
G.
Dunne
,
IEEE Trans. Electron Devices
54
,
2823
(
2007
).
38.
A.
Chanthaphan
,
T.
Hosoi
,
S.
Mitani
,
Y.
Nakano
,
T.
Nakamura
,
T.
Shimura
, and
H.
Watanabe
,
Appl. Phys. Lett.
100
,
252103
(
2012
).
39.
T.
Okayama
,
S. D.
Arthur
,
J. L.
Garrett
, and
M. V.
Rao
,
Solid State Electron.
52
,
164
(
2008
).
40.
B.
Miao
,
R.
Mahapatra
,
N.
Wright
, and
A.
Horsfall
,
J. Appl. Phys.
104
,
054510
(
2008
).
41.
K.
Król
,
P.
Konarski
,
M.
Miśnik
,
M.
Sochacki
, and
J.
Szmidt
,
Acta Phys. Pol. A
126
,
1100
(
2014
).
42.
L.
Martin
,
H.
Chan
,
M.
Weng
, and
A.
Horsfall
,
Advanced Silicon Carbide Devices Processing
(
Intech
,
2015
), pp.
61
95
.
43.
J.
Rozen
,
A. C.
Ahyi
,
X.
Zhu
,
J. R.
Williams
, and
L. C.
Feldman
,
IEEE Trans. Electron Devices
58
,
3808
(
2011
).
44.
H.
Yoshioka
,
T.
Nakamura
, and
T.
Kimoto
,
J. Appl. Phys.
111
,
14502
(
2012
).
45.
Y. K.
Sharma
,
A. C.
Ahyi
,
T.
Isaacs-Smith
,
A.
Modic
, and
M.
Park
,
IEEE Electron Device Lett.
34
,
175
(
2013
).
46.
L. M.
Terman
,
Solid State Electron.
5
,
285
(
1962
).
47.
M.
Toledano-Luque
,
B.
Kaczer
,
P.
Roussel
,
M. J.
Cho
,
T.
Grasser
, and
G.
Groeseneken
,
J. Vac. Sci. Technol. B Microelectron. Nanometer Struct.
29
,
01AA04
(
2011
).
48.
F.
Schanovsky
,
W.
Goes
, and
T.
Grasser
,
International Conference on Simulation of Semiconductor Processes and Devices, SISPAD
(
2013
), p.
451
.
49.
S.
Nakazawa
,
T.
Okuda
,
J.
Suda
, and
T.
Nakamura
,
IEEE Trans. Electron Devices
62
,
309
(
2015
).
50.
H.
Yoshioka
,
T.
Nakamura
, and
T.
Kimoto
,
J. Appl. Phys.
112
,
024520
(
2012
).
You do not currently have access to this content.