The Particle-In-Cell Monte Carlo Collision (PIC MCC) method has been used by different authors in the last ten years to describe negative ion extraction in the context of neutral beam injection for fusion. Questionable results on the intensity and profile of the extracted negative ion beamlets have been presented in several recently published papers. Using a standard explicit PIC MCC method, we show that these results are due to a non-compliance with the constraints of the numerical method (grid spacing, number of particles per cell) and to a non-physical generation of the simulated plasma. We discuss in detail the conditions of mesh convergence and plasma generation and show that the results can significantly deviate from the correct solution and lead to unphysical features when the constraints inherent to the method are not strictly fulfilled. This paper illustrates the importance of verification in any plasma simulation. Since the results presented in this paper have been obtained with careful verification of the method, we propose them as benchmarks for future comparisons between different simulation codes for negative ion extraction.

1.
D. P.
Moehs
,
J.
Peters
, and
J.
Sherman
,
IEEE Trans. Plasma Sci.
33
,
1786
(
2005
).
2.
M. L.
Mayoral
 et al.,
Nucl. Fusion
54
,
033002
(
2014
).
3.
N.
Umeda
 et al.,
Nucl. Fusion
43
,
522
(
2003
).
4.
R. S.
Hemsworth
,
A.
Tanga
, and
V.
Antoni
,
Rev. Sci. Instrum.
79
,
02C109
(
2008
).
5.
A.
Simonin
 et al.,
Nucl. Fusion
55
,
123020
(
2015
).
6.
E.
Speth
 et al.,
Nucl. Fusion
46
,
S220
(
2006
).
7.
A.
Staebler
 et al.,
Fusion Eng. Des.
84
,
265
(
2009
).
8.
U.
Fantz
 et al.,
Plasma Phys. Controlled Fusion
49
,
B563
(
2007
).
9.
P.
Frantzen
 et al.,
Fusion Eng. Des.
88
,
3132
(
2013
).
10.
M.
Kashigawi
 et al.,
Rev. Sci. Instrum.
81
,
02B113
(
2010
).
11.
M.
Bacal
and
M.
Wada
,
Appl. Phys. Rev.
2
,
021305
(
2015
).
12.
F.
Taccogna
,
R.
Schneider
,
S.
Longo
, and
M.
Capitelli
,
Phys. Plasmas
15
,
103502
(
2008
).
13.
D.
Wünderlich
,
R.
Gutser
, and
U.
Fantz
,
Plasma Sources Sci. Technol.
18
,
045031
(
2009
).
14.
F.
Taccogna
,
M.
Minelli
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
Phys. Plasmas
17
,
063502
(
2010
).
15.
S.
Kuppel
,
D.
Matsushita
,
A.
Hatayama
, and
M.
Bacal
,
J. Appl. Phys.
109
,
013305
(
2011
).
16.
K.
Miyamoto
,
S.
Okuda
, and
A.
Hatayama
,
Appl. Phys. Let.
100
,
233507
(
2012
).
17.
K.
Miyamoto
,
S.
Okuda
,
S.
Nishioka
, and
A.
Hatayama
,
J. Appl. Phys.
114
,
103302
(
2013
).
18.
F.
Taccogna
,
M.
Minelli
,
P.
Diomede
,
S.
Longo
,
M.
Capitelli
, and
R.
Schneider
,
Plasma Sources Sci. Technol.
20
,
024009
(
2011
).
19.
S.
Mochalskyy
,
A. F.
Lifschitz
, and
T.
Minea
,
J. Appl. Phys.
111
,
113303
(
2012
).
20.
F.
Taccogna
,
M.
Minelli
, and
S.
Longo
,
Plasma Sources Sci. Technol.
22
,
045019
(
2013
).
21.
S.
Mochalskyy
,
D.
Wünderlich
,
B.
Ruf
,
U.
Fantz
,
P.
Franzen
, and
T.
Minea
,
Plasma Phys. Controlled Fusion
56
,
105001
(
2014
).
22.
S.
Mochalskyy
,
D.
Wünderlich
,
U.
Fantz
,
P.
Franzen
, and
T.
Minea
,
Nucl. Fusion
55
,
033011
(
2015
).
23.
S.
Nishioka
,
I.
Goto
,
K.
Miyamoto
,
A.
Hatayama
, and
A.
Fukano
,
J. Appl. Phys.
119
,
023302
(
2016
).
24.
R.
McAdams
,
A. J. T.
Holmes
,
D. B.
King
, and
E.
Surrey
,
Plasma Sources Sci. Technol.
20
,
035023
(
2011
).
25.
A.
Revel
,
S.
Mochalskyy
,
L.
Caillault
,
A.
Lifschitz
, and
T.
Minea
,
Nucl. Fusion
53
,
073027
(
2013
).
26.
R. S.
Hemsworth
 et al.,
Nucl. Fusion
49
,
045006
(
2009
).
27.
Yu. I.
Belchenko
 et al.,
Rev. Sci. Instrum.
75
,
1726
(
2004
).
28.
M.
Kashigawi
 et al.,
Rev. Sci. Instrum.
85
,
02B320
(
2014
).
29.
J. P.
Boeuf
,
G.
Fubiani
, and
L.
Garrigues
,
Plasma Sources Sci. Technol.
25
,
045010
(
2016
).
30.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics Via Computer Simulation
(
IOP Publishing
,
New York
,
2005
).
31.
L. A.
Schwager
and
C. K.
Birdsall
,
Phys. Fluids B
2
,
1057
(
1990
).
32.
R. J.
Procassini
,
C. K.
Birdsall
, and
E. C.
Morse
,
Phys. Fluids B
2
,
3191
(
1990
).
33.
K.
Theilhaber
and
C. K.
Birdsall
,
Phys. Fluids B
1
,
2244
(
1989
).
34.
R. J.
Procassini
and
C. K.
Birdsall
,
Phys. Fluids B
3
,
1876
(
1991
).
35.
G.
Gozadinos
,
D.
Vender
, and
M. M.
Turner
,
J. Comput. Phys.
172
,
348
(
2001
).
36.
L.
Jolivet
and
J. F.
Roussel
,
IEEE Trans. Plasma Sci.
30
,
318
(
2002
).
37.
A.
Froese
,
T.
Takuzika
, and
M.
Yagi
,
Contrib. Plasma Phys.
50
,
273
(
2010
).
38.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley Interscience
,
New York
,
2005
).
39.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
New York
,
1988
).
40.
C.
Petra
,
O.
Schenk
,
M.
Lubin
, and
K.
Gaertner
,
SIAM J. Sci. Comput.
36
,
C139
(
2014
).
41.
C.
Hirsch
,
Numerical Computation of Internal and External Flows: Fundamentals of Computational Fluid Dynamics
(
Elsevier
,
BH
,
2007
).
42.
R. K.
Janev
,
D.
Reiter
, and
U.
Samm
, “
Collision processes in low-temperature hydrogen plasmas
,”
Technical Report No. 4105
, FZ-Juelich,
2003
.
43.
J. P.
Boeuf
and
E.
Marode
,
J. Phys. D: Appl. Phys.
15
,
2169
(
1982
).
44.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
45.
J. P.
Verboncoeur
,
Plasma Phys. Controlled Fusion
47
,
A231
(
2005
).
46.
G.
Fubiani
and
J. P.
Boeuf
,
Phys. Plasmas
20
,
113511
(
2013
).
47.
K.
Germaschewski
,
W.
Fox
,
S.
Abbott
,
N.
Ahmadi
,
K.
Maynard
,
L.
Wang
,
H.
Ruhl
, and
A.
Bhattacharjee
,
J. Comput. Phys.
318
,
305
(
2016
).
48.
K. J.
Bowers
,
J. Comput. Phys.
173
,
393
(
2001
).
49.
M.
Berger
,
U.
Fantz
,
S.
Christ-Koch
, and
NNBI Team
,
Plasma Sources Sci. Technol.
18
,
025004
(
2009
).
50.
L.
Svensson
,
D.
Boilson
,
H. P. L.
de Esch
,
R. S.
Hemsworth
, and
A.
Krylov
,
Nucl. Fusion
46
,
S369
(
2006
).
51.
G. J. M.
Hagelaar
,
Modeling Methods for Low Temperature Plasmas
(
Habilitation à Diriger des Recherches
,
Toulouse, France
,
2008
).
52.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
).
You do not currently have access to this content.