Due to their high strength and advantageous high-temperature properties, tungsten-based alloys are being considered as plasma-facing candidate materials in fusion devices. Under neutron irradiation, rhenium, which is produced by nuclear transmutation, has been found to precipitate in elongated precipitates forming thermodynamic intermetallic phases at concentrations well below the solubility limit. Recent measurements have shown that Re precipitation can lead to substantial hardening, which may have a detrimental effect on the fracture toughness of W alloys. This puzzle of sub-solubility precipitation points to the role played by irradiation induced defects, specifically mixed solute-W interstitials. Here, using first-principles calculations based on density functional theory, we study the energetics of mixed interstitial defects in W-Re, W-V, and W-Ti alloys, as well as the heat of mixing for each substitutional solute. We find that mixed interstitials in all systems are strongly attracted to each other with binding energies of −2.4 to 3.2eV and form interstitial pairs that are aligned along parallel first-neighbor 111 strings. Low barriers for defect translation and rotation enable defect agglomeration and alignment even at moderate temperatures. We propose that these elongated agglomerates of mixed-interstitials may act as precursors for the formation of needle-shaped intermetallic precipitates. This interstitial-based mechanism is not limited to radiation induced segregation and precipitation in W–Re alloys but is also applicable to other body-centered cubic alloys.

1.
S. J.
Zinkle
and
N. M.
Ghoniem
,
Fusion Eng. Des.
51–52
,
55
(
2000
).
2.
M.
Rieth
,
S. L.
Dudarev
,
S. M.
Gonzalez de Vicente
,
J.
Aktaa
,
T.
Ahlgren
,
S.
Antusch
,
D. E. J.
Armstrong
,
M.
Balden
,
N.
Baluc
,
M. F.
Barthe
,
W. W.
Basuki
,
M.
Battabyal
,
C. S.
Becquart
,
D.
Blagoeva
,
H.
Boldyryeva
,
J.
Brinkmann
,
M.
Celino
,
L.
Ciupinski
,
J. B.
Correia
,
A.
De Backer
,
C.
Domain
,
E.
Gaganidze
,
C.
García-Rosales
,
J.
Gibson
,
M. R.
Gilbert
,
S.
Giusepponi
,
B.
Gludovatz
,
H.
Greuner
,
K.
Heinola
,
T.
Höschen
,
A.
Hoffmann
,
N.
Holstein
,
F.
Koch
,
W.
Krauss
,
H.
Li
,
S.
Lindig
,
J.
Linke
,
C.
Linsmeier
,
P.
López-Ruiz
,
H.
Maier
,
J.
Matejicek
,
T. P.
Mishra
,
M.
Muhammed
,
A.
Muñoz
,
M.
Muzyk
,
K.
Nordlund
,
D.
Nguyen-Manh
,
J.
Opschoor
,
N.
Ordás
,
T.
Palacios
,
G.
Pintsuk
,
R.
Pippan
,
J.
Reiser
,
J.
Riesch
,
S. G.
Roberts
,
L.
Romaner
,
M.
Rosiñski
,
M.
Sanchez
,
W.
Schulmeyer
,
H.
Traxler
,
A.
Ureña
,
J. G.
van der Laan
,
L.
Veleva
,
S.
Wahlberg
,
M.
Walter
,
T.
Weber
,
T.
Weitkamp
,
S.
Wurster
,
M. A.
Yar
,
J. H.
You
, and
A.
Zivelonghi
,
J. Nucl. Mater.
432
,
482
(
2013
).
3.
S. P.
Fitzgerald
and
D.
Nguyen-Manh
,
Phys. Rev. Lett.
101
,
115504
(
2008
).
4.
C. S.
Becquart
and
C.
Domain
,
J. Nucl. Mater.
385
,
223
(
2009
).
5.
M. R.
Gilbert
and
J.-C.
Sublet
,
Nucl. Fusion
51
,
043005
(
2011
).
6.
M. R.
Gilbert
,
S. L.
Dudarev
,
S.
Zheng
,
L. W.
Packer
, and
J.-C.
Sublet
,
Nucl. Fusion
52
,
083019
(
2012
).
7.
T.
Tanno
,
A.
Hasegawa
,
J. C.
He
,
M.
Fujiwara
,
M.
Satou
,
S.
Nogami
,
K.
Abe
, and
T.
Shishido
,
J. Nucl. Mater.
386–388
,
218
(
2009
).
8.
A.
Hasegawa
,
T.
Tanno
,
S.
Nogami
, and
M.
Satou
,
J. Nucl. Mater.
417
,
491
(
2011
).
9.
X.
Hu
,
T.
Koyanagi
,
Y.
Katoh
,
M.
Fukuda
,
B. D.
Wirth
, and
L. L.
Snead
, “
Defect evolution in neutron-irradiated single crystalline tungsten
,”
Semiannual Progress Report No. dOE/ER-0313/58
, 30 June
2015
.
10.
T.
Tanno
,
A.
Hasegawa
,
J.-C.
He
,
M.
Fujiwara
,
S.
Nogami
,
M.
Satou
,
T.
Shishido
, and
K.
Abe
,
Mater. Trans.
48
,
2399
(
2007
).
11.
A.
Xu
,
C.
Beck
,
D. E. J.
Armstrong
,
K.
Rajan
,
G. D. W.
Smith
,
P. A. J.
Bagot
, and
S. G.
Roberts
,
Acta Mater.
87
,
121
(
2015
).
12.
R. K.
Williams
,
F. W.
Wiffen
,
J.
Bentley
, and
J. O.
Stiegler
,
Metall. Trans. A
14
,
655
(
1983
).
13.
A.
Ardell
, in
Materials Issues for Generation IV Systems
, NATO Science for Peace and Security Series B: Physics and Biophysics, edited by
V.
Ghetta
,
D.
Gorse
,
D.
Mazière
, and
V.
Pontikis
(
Springer Netherlands
,
2008
), pp.
285
310
.
14.
T.
Suzudo
,
M.
Yamaguchi
, and
A.
Hasegawa
,
J. Nucl. Mater.
467
,
418
(
2015
).
15.
L.
Gharaee
and
P.
Erhart
,
J. Nucl. Mater.
467
,
448
(
2015
).
16.
F.
Willaime
,
C. C.
Fu
,
M. C.
Marinica
, and
J.
Dalla Torre
,
Nucl. Instrum. Methods Phys. Res. B
228
,
92
(
2005
).
17.
P. M.
Derlet
,
D.
Nguyen-Manh
, and
S. L.
Dudarev
,
Phys. Rev. B
76
,
054107
(
2007
).
18.
T.
Suzudo
,
M.
Yamaguchi
, and
A.
Hasegawa
,
Modell. Simul. Mater. Sci. Eng.
22
,
075006
(
2014
).
19.
P.
Erhart
,
B.
Sadigh
, and
A.
Caro
,
Appl. Phys. Lett.
92
,
141904
(
2008
).
20.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
21.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
22.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
23.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
24.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
25.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
erratum
,
Phys. Rev. Lett.
78
,
1396(E)
(
1997
).
27.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
28.
S. A.
Centoni
,
B.
Sadigh
,
G. H.
Gilmer
,
T. J.
Lenosky
,
T.
Diaz de la Rubia
, and
C. B.
Musgrave
,
Phys. Rev. B
72
,
195206
(
2005
).
29.
E.
Jedvik
,
A.
Lindman
,
M. T.
Benediktsson
, and
G.
Wahnström
,
Solid State Ionics
275
,
2
(
2015
).
30.
S.
Chiesa
,
M. R.
Gilbert
,
S. L.
Dudarev
,
P. M.
Derlet
, and
H. V.
Swygenhoven
,
Philos. Mag.
89
,
3235
(
2009
).
31.
M. R.
Gilbert
and
S. L.
Dudarev
,
Philos. Mag.
90
,
1035
(
2010
).
32.
H.
Li
,
S.
Wurster
,
C.
Motz
,
L.
Romaner
,
C.
Ambrosch-Draxl
, and
R.
Pippan
,
Acta Mater.
60
,
748
(
2012
).
33.
M.
Muzyk
,
D.
Nguyen-Manh
,
K. J.
Kurzydłowski
,
N. L.
Baluc
, and
S. L.
Dudarev
,
Phys. Rev. B
84
,
104115
(
2011
).
34.
J.-C.
Crivello
and
J.-M.
Joubert
,
J. Phys. Condens. Matter
22
,
035402
(
2010
).
35.
E.
Rudy
and
S.
Windisch
,
Trans. Metall. Soc. AIME
242
,
953
(
1968
).
36.
L.
Kaufman
and
H.
Nesor
,
Metall. Trans. A
6
,
2123
(
1975
).
37.
S. K.
Lee
and
D. N.
Lee
,
Calphad
10
,
61
(
1986
).
38.
L.
Gharaee
,
M.
Ångqvist
, and
P.
Erhart
, “
Reassessment of the low-temperature part of the W–Ti phase diagram from first-principles calculations
” (unpublished).
39.
X.-S.
Kong
,
X.
Wu
,
Y.-W.
You
,
C.
Liu
,
Q.
Fang
,
J.-L.
Chen
,
G.-N.
Luo
, and
Z.
Wang
,
Acta Mater.
66
,
172
(
2014
).
40.
P. D.
Edmondson
,
A.
Xu
,
L. R.
Hanna
,
M.
Dagan
,
S. G.
Roberts
, and
L. L.
Snead
,
Microsc. Microanal.
21
,
579
(
2015
).
41.
P.
Erhart
,
J.
Marian
, and
B.
Sadigh
,
Phys. Rev. B
88
,
024116
(
2013
).
42.
L. L.
Snead
,
L. M.
Garrison
,
T. S.
Byun
,
N. A. P. K.
Kumar
, and
W. D.
Lewis
, “
Evaluation of mechanical properties of tungsten after neutron irradiation
,” in
Fusion Reactor Materials Program 55
(
Oak Ridge National Laboratory
,
2013
).
43.
C.-C.
Fu
,
J.
Dalla Torre
,
F.
Willaime
,
J.-L.
Bocquet
, and
A.
Barbu
,
Nat. Mater.
4
,
68
74
(
2005
).
44.
J. H.
Evans
,
J. Nucl. Mater.
119
,
180
188
(
1983
).
45.
Yu. N.
Osetsky
,
D. J.
Bacon
,
A.
Serra
,
B. N.
Singh
, and
S. I.
Golubov
,
Philos. Mag.
83
,
61
91
(
2003
).
You do not currently have access to this content.