Hexagonal and cubic GaN—integrated on on-axis Si(100) substrate by metalorganic chemical vapor deposition via selective epitaxy and hexagonal-to-cubic-phase transition, respectively—are studied by temperature- and injection-intensity-dependent cathodoluminescence to explore the origins of their respective luminescence centers. In hexagonal (cubic) GaN integrated on Si, we identify at room temperature the near band edge luminescence at 3.43 eV (3.22 eV), and a defect peak at 2.21 eV (2.72 eV). At low temperature, we report additional hexagonal (cubic) GaN bound exciton transition at 3.49 eV (3.28 eV), and a donor-to-acceptor transition at 3.31 eV (3.18 eV and 2.95 eV). In cubic GaN, two defect-related acceptor energies are identified as 110 and 360 meV. For hexagonal (cubic) GaN (using Debye Temperature (β) of 600 K), Varshni coefficients of α=7.37±0.13×104(6.83±0.22×104)eV/K and E0=3.51±0.01(3.31±0.01) eV are extracted. Hexagonal and cubic GaN integrated on CMOS compatible on-axis Si(100) are shown to be promising materials for next generation devices.

1.
H.
Morkoc
,
Handbook of Nitride Semiconductors and Devices
(
Wiley
,
Weinheim
,
2008
).
2.
D. J.
As
,
Microelectron. J.
40
,
204
209
(
2009
).
3.
T.
Kitamura
,
Y.
Suzuki
,
Y.
Ishida
,
X. Q.
Shen
,
H.
Nakanishi
,
S. F.
Chichibu
,
M.
Shimizu
, and
H.
Okumura
,
Phys. Status Solidi A
188
,
705
709
(
2001
).
4.
R.
Granzner
,
E.
Tschumak
,
M.
Kittler
,
K.
Tonisch
,
W.
Jatal
,
J.
Pezoldt
,
D.
As
, and
F.
Schwierz
,
J. Appl. Phys.
110
,
114501
(
2011
).
5.
J. H.
Bub
,
A.
Schaefer
,
T.
Schupp
,
D. J.
As
,
D.
Hagele
, and
J.
Rudolp
,
Appl. Phys. Lett.
105
,
182404
(
2014
).
6.
D. J.
As
,
A.
Richter
,
J.
Bush
,
M.
Lubbers
,
J.
Mimkes
, and
K.
Lischka
,
Appl. Phys. Lett.
76
,
13
15
(
2000
).
7.
S. F.
Chichibu
,
T.
Onuma
,
T.
Aoyama
,
K.
Nakajima
,
P.
Ahmet
,
T.
Chikyow
,
T.
Sota
,
S. P.
DenBaars
,
S.
Nakamura
,
T.
Kitamura
,
Y.
Ishida
, and
H.
Okumura
,
J. Vac. Sci. Technol., B
21
(
4
),
1856
1862
(
2003
).
8.
C. H.
Wei
,
Z. Y.
Xie
,
L. Y.
Li
,
Q. M.
Yu
, and
J. H.
Edgar
,
J. Electron. Mater.
29
(
3
),
317
321
(
2000
).
9.
V. D. C.
Garcia
,
I. E. O.
Hinostroza
,
A. E.
Echavarria
,
E. L.
Luna
,
A. G.
Rodriguez
, and
M. A.
Vidal
,
J. Cryst. Growth
418
,
120
125
(
2015
).
10.
S. C.
Lee
,
X. Y.
Sun
,
S. D.
Hersee
, and
S. R. J.
Brueck
,
J. Cryst. Growth
279
,
289
292
(
2005
).
11.
C.
Bayram
,
J.
Ott
,
K.-T.
Shiu
,
C.-W.
Cheng
,
Y.
Zhu
,
J.
Kim
,
M.
Razeghi
, and
D. K.
Sadana
,
Adv. Funct. Mater.
24
(
28
),
4491
(
2014
).
12.
B.
Reuters
,
J.
Strate
,
A.
Wille
,
M.
Marx
,
G.
Lükens
,
L.
Heuken
,
M.
Heuken
,
H.
Kalisch
, and
A.
Vescan
,
J. Phys. D: Appl. Phys.
48
,
485103
(
2015
).
13.
M. T.
Durniak
,
A. S.
Bross
,
D.
Elsaesser
,
A.
Chaudhuri
,
M. L.
Smith
,
A. A.
Allerman
,
S. C.
Lee
,
S. R. J.
Brueck
, and
C.
Wetzel
,
Adv. Electron. Mater.
2
,
1500327
(
2016
).
14.
C.
Bayram
,
C.-W.
Cheng
,
D. K.
Sadana
, and
K.-T.
Shiu
, U.S. patent 9,048,173 (2 June
2015
).
15.
H.
Schröder
,
E.
Obermeier
,
A.
Horn
, and
G. K. M.
Wachutka
,
J. Microelectromech. Syst.
10
(
1
),
88
97
(
2001
).
16.
See supplementary material at http://dx.doi.org/10.1063/1.4958335 for the response of the CL system.
17.
K.
Kanaya
and
S.
Okayama
,
J. Phys. D. Appl. Phys.
5
,
43
(
1972
).
18.
M. A.
Reshchikov
,
M.
Zafar Iqbal
,
S. S.
Park
,
K. Y.
Lee
,
D.
Tsvetkov
,
V.
Dmitriev
, and
H.
Morkoç
,
Physica B
340–342
,
444
(
2003
).
19.
T.
Azuhata
,
T.
Sota
,
K.
Suzuki
, and
S.
Nakamura
,
J. Phys.: Condens. Matter
7
,
L129
(
1995
).
20.
J.
Wu
,
H.
Yaguchi
,
K.
Onabe
, and
R.
Ito
,
Appl. Phys. Lett.
71
(
15
),
2067
(
1997
).
21.
C.
Wang
,
D. J.
As
,
B.
Schottker
,
D.
Schikora
, and
K.
Lischka
,
Semicond. Sci. Technol.
14
,
161
(
1999
).
22.
E. R.
Glaser
,
J. A.
Freitas
, Jr.
,
B. V.
Shanabrook
, and
D. D.
Koleske
,
Phys. Rev. B
68
,
195201
(
2003
).
23.
D. J.
As
,
F.
Schmilgus
,
C.
Wang
,
B.
Schoüttker
,
D.
Schikora
, and
K.
Lischka
,
Appl. Phys. Lett.
70
,
1311
(
1997
).
24.
H.
Okumura
,
H.
Hamaguchi
,
G.
Feuillet
,
Y.
Ishida
, and
S.
Yoshida
,
Appl. Phys. Lett.
72
,
3056
(
1998
).
25.
J.
Menniger
,
U.
Jahn
,
O.
Brandt
,
H.
Yang
, and
K.
Ploog
,
Appl. Phys. Lett.
69
,
836
(
1996
).
26.
M. A.
Reshchikov
and
H.
Morkoç
,
J. Appl. Phys.
97
,
061301
(
2005
).
27.
R.
Zhang
and
T. F.
Kuech
,
Appl. Phys. Lett.
72
,
1611
(
1998
).
29.
R.
Dingle
,
D. D.
Sell
,
S. E.
Stokowski
, and
M.
Ilegems
,
Phys. Rev. B
4
,
1211
(
1971
).
30.
G.
Ramírez-Flores
,
H.
Navarro-Contreras
,
A.
Lastras-Martínez
,
R. C.
Powell
, and
J. E.
Greene
,
Phys. Rev. B
50
,
8433
(
1994
).
31.
H.
Teisseyre
,
P.
Perlin
,
T.
Suski
,
I.
Grzegory
,
S.
Porowski
,
J.
Jun
,
A.
Pietraszko
, and
T. D.
Moustakas
,
J. Appl. Phys.
76
,
2429
(
1994
).
32.
B. G.
Yacobi
and
D. B.
Holt
,
J. Appl. Phys.
59
,
R1
(
1986
).
33.
Z.
Rouabah
,
A.
Bouzid
,
C.
Champion
, and
N.
Bouarissa
,
Solid State Commun.
151
,
838
(
2011
).
34.
R.
Dingle
and
M.
Ilegems
,
Solid State Commun.
9
,
175
(
1971
).
35.
D.
Schikora
,
M.
Hankeln
,
D. J.
As
,
K.
Lischka
,
T.
Litz
,
A.
Waag
,
T.
Buhrow
, and
F.
Henneberger
,
Phys. Rev. B
54
,
R8381
(
1996
).
36.
J.
Holst
,
L.
Eckey
,
A.
Hoffmann
,
I.
Broser
,
B.
Schoüttker
,
D. J.
As
,
D.
Schikora
, and
K.
Lischka
,
Appl. Phys. Lett.
72
,
1439
(
1998
).
37.
J.
Menniger
,
U.
Jahn
,
O.
Brandt
,
H.
Yang
, and
K.
Ploog
,
Phys. Rev. B
53
,
1881
(
1996
).

Supplementary Material

You do not currently have access to this content.