We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb–Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs–Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

1.
D.
Budker
and
M.
Romalis
,
Nat. Phys.
3
,
227
(
2007
).
2.
D.
Budker
and
D. F.
Jackson Kimball
,
Optical Magnetometry
(
Cambridge University Press
,
New York, NY
,
2013
), ISBN 978-1-107-01035-2.
3.
S. J.
Smullin
,
I. M.
Savukov
,
G.
Vasilakis
,
R. K.
Ghosh
, and
M. V.
Romalis
,
Phys. Rev. A
80
,
033420
(
2009
).
4.
J.
Camparo
,
Phys. Today
60
(
11
),
33
(
2007
).
5.
A. B.
Post
,
Y.-Y.
Jau
,
N. N.
Kuzma
, and
W.
Happer
,
Phys. Rev. A
72
,
033417
(
2005
).
6.
S.
Knappe
,
V.
Gerginov
,
P. D. D.
Schwindt
,
V.
Shah
,
H. G.
Robinson
,
L.
Hollberg
, and
J.
Kitching
,
Opt. Lett.
30
,
2351
(
2005
).
7.
M. V.
Balabas
,
T.
Karaulanov
,
M. P.
Ledbetter
, and
D.
Budker
,
Phys. Rev. Lett.
105
,
070801
(
2010
).
8.
S. J.
Seltzer
,
D. J.
Michalak
,
M. H.
Donaldson
,
M. V.
Balabas
,
S. K.
Barber
,
S. L.
Bernasek
,
M.-A.
Bouchiat
,
A.
Hexemer
,
A. M.
Hibberd
,
D. F.
Jackson Kimball
,
C.
Jaye
,
T.
Karaulanov
,
F. A.
Narducci
,
S. A.
Rangwala
,
H. G.
Robinson
,
A. K.
Shmakov
,
D. L.
Voronov
,
V. V.
Yashchuk
,
A.
Pines
, and
D.
Budker
,
J. Chem. Phys.
133
,
144703
(
2010
).
9.
J.
Ma
,
A.
Kishinevski
,
Y. Y.
Jau
,
C.
Reuter
, and
W.
Happer
,
Phys. Rev. A
79
,
042905
(
2009
).
10.
T.
Karaulanov
,
M. T.
Graf
,
D.
English
,
S. M.
Rochester
,
Y. J.
Rosen
,
K.
Tsigutkin
,
D.
Budker
,
E. B.
Alexandrov
,
M. V.
Balabas
,
D. F.
Jackson Kimball
,
A.
Narducci
,
S.
Pustelny
, and
V. V.
Yashchuk
,
Phys. Rev. A
79
,
012902
(
2009
).
11.
K.
Ishikawa
,
B.
Patton
,
Y.-Y.
Jau
, and
W.
Happer
,
Phys. Rev. Lett.
98
,
183004
(
2007
).
12.
K.
Ishikawa
,
B.
Patton
,
B. A.
Olsen
,
Y.-Y.
Jau
, and
W.
Happer
,
Phys. Rev. A
83
,
063410
(
2011
).
13.
E.
Ulanski
and
Z.
Wu
,
Phys. Rev. A
89
,
053431
(
2014
).
14.
H. G.
Robinson
and
C. E.
Johnson
,
Appl. Phys. Lett.
40
,
771
(
1982
).
15.
D.
Budker
,
L.
Hollberg
,
D. F.
Kimball
,
J.
Kitching
,
S.
Pustelny
, and
V. V.
Yashchuk
,
Phys. Rev. A
71
,
012903
(
2005
).
16.
S.
Micalizio
,
A.
Godone
,
F.
Levi
, and
J.
Vanier
,
Phys. Rev. A
73
,
033414
(
2006
).
17.
W.
Heil
,
H.
Humblot
,
E.
Otten
,
M.
Schafer
,
R.
Sarkau
, and
M.
Leduc
,
Phys. Lett. A
201
,
337
(
1995
).
18.
M. G.
Burt
and
V.
Heine
,
J. Phys. C: Solid State Phys.
11
,
961
(
1978
).
19.
A.
Böttcher
,
R.
Grobecker
,
R.
Imbeck
,
A.
Morgante
, and
G.
Ertl
,
J. Chem. Phys.
95
,
3756
(
1991
).
20.
A.
Deninger
,
W.
Heil
,
E. W.
Otten
,
M.
Wolf
,
R. K.
Kremer
, and
A.
Simon
,
Eur. Phys. J. D
38
,
439
(
2006
).
21.
N. N.
Greenwood
and
A.
Earnshaw
,
Chemistry of the Elements
, 2nd ed. (
Butterworth-Heinemann
,
Oxford
,
1997
).
22.
T. R.
Krawietz
,
D. K.
Murray
, and
J. F.
Haw
,
J. Phys. Chem. A
102
,
8779
(
1998
).
23.
M.
Klanjšek
,
D.
Arčon
,
A.
Sans
,
P.
Adler
,
M.
Jansen
, and
C.
Felser
,
Phys. Rev. Lett.
115
,
057205
(
2015
).
24.
J. P.
Perdew
and
J. W.
Wilkins
,
Solid State Commun.
8
,
2041
(
1970
).
25.
L.
Rimai
and
N.
Bloembergen
,
J. Phys. Chem. Solids
13
,
257
(
1960
).
26.
J. L.
van Hemmen
,
S. B.
van der Molen
, and
W.
van der Lugt
,
Philos. Mag.
29
,
493
(
1974
).
27.
J. L.
van Hemmen
,
W. J.
Caspers
,
S. B.
Molen
,
W.
Lugt
, and
H. P.
Braak
,
Z. Phys.
222
,
253
(
1969
).
28.
S.
van der Molen
,
W.
van der Lugt
,
G.
Draisma
, and
W.
Smit
,
Physica
40
,
1
(
1968
).
29.
S.
van der Molen
,
W.
van der Lugt
,
G.
Draisma
, and
W.
Smit
,
Physica
38
,
275
(
1968
).
30.
C. H.
Townes
,
C.
Herring
, and
W. D.
Knight
,
Phys. Rev.
77
,
852
(
1950
).
31.
B.
Patton
,
K.
Ishikawa
,
Y.-Y.
Jau
, and
W.
Happer
,
Phys. Rev. Lett.
99
,
027601
(
2007
).
32.
W.
Happer
,
G. D.
Cates
,
M. V.
Romalis
, and
C. J.
Erickson
, U.S. patent No. 6,318,092 (
2001
).
33.
W. C.
Chen
,
T. R.
Gentile
,
T. G.
Walker
, and
E.
Babcock
,
Phys. Rev. A
75
,
013416
(
2007
).
34.
M. V.
Romalis
,
Phys. Rev. Lett.
105
,
243001
(
2010
).
35.
N. D.
Bhaskar
,
J.
Camparo
,
W.
Happer
, and
A.
Sharma
,
Phys. Rev. A
23
,
3048
(
1981
).
36.
S.
Appelt
,
A.
Ben-Amar Baranga
,
A. R.
Young
, and
W.
Happer
,
Phys. Rev. A
59
,
2078
(
1999
).
37.
K.
Ishikawa
,
T.
Kojima
,
T.
Hasegawa
, and
Y.
Takagi
,
Phys. Rev. A
65
,
032511
(
2002
).
38.
T.
Scholtes
,
V.
Schultze
,
R.
IJsselsteijn
,
S.
Woetzel
, and
H.-G.
Meyer
,
Phys. Rev. A
84
,
043416
(
2011
).
39.
S.
Li
,
P.
Vachaspati
,
D.
Sheng
,
N.
Dural
, and
M. V.
Romalis
,
Phys. Rev. A
84
,
061403
(
2011
).
40.
K.
Ishikawa
, “Vapor density of alkali-metal binary alloys in glass cells” (unpublished).
41.
J.
Camparo
,
C.
Klimcak
, and
S.
Herbulock
,
IEEE Trans. Instrum. Meas.
54
,
1873
(
2005
).
42.
M. P. R.
Thomsen
,
L. J.
Stief
, and
R. J.
Fallon
, in
22nd Annual Symposium on Frequency Control, 1968
(
1968
), pp.
559
572
.
43.
J.
Camparo
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
52
,
1075
(
2005
).
44.
J. G.
Coffer
and
J. C.
Camparo
,
J. Appl. Phys.
111
,
083304
(
2012
).
45.
46.
J. B.
Ott
,
J. R.
Goates
, and
D. E.
Oyler
,
Trans. Faraday Soc.
67
,
31
(
1971
).
47.
J. R.
Goates
,
J. B.
Ott
, and
C. C.
Hsu
,
Trans. Faraday Soc.
66
,
25
(
1970
).
48.
A.
Simon
,
Z. Anorg. Allg. Chem.
395
,
301
(
1973
).
50.
T.
Massalski
,
H.
Okamoto
, and
ASM International
,
Binary Alloy Phase Diagrams
(
ASM International
,
1990
), Vol.
2
.
51.
R. A.
Oriani
,
J. Chem. Phys.
31
,
557
(
1959
).
52.
J. B.
Ott
,
J. R.
Goates
,
D. R.
Anderson
, and
H. T.
Hall
,
Trans. Faraday Soc.
65
,
2870
(
1969
).
53.
B. R.
McGarvey
and
H. S.
Gutowsky
,
J. Chem. Phys.
21
,
2114
(
1953
).
54.

It is known that glass heated in the presence of sodium will tend to darken at lower temperatures than when heated in the presence of Rb or Cs, implying a more rapid reaction.

55.
T. B.
Reed
,
Free Energy of Formation of Binary Compounds
(
MIT Press
,
Boston
,
1971
).
56.

This can be contrasted with the reaction CsCl+NaNaCl+Cs, which has a free-energy change of +31 kJ/mol and is thus not energetically favorable.

57.
E. E.
Shpilrain
,
S. N.
Skovorodko
,
I. L.
Maikov
, and
A. G.
Mozgovoi
,
High Temperature
40
,
531
(
2002
).
58.
I. M.
Savukov
,
S. J.
Seltzer
,
M. V.
Romalis
, and
K. L.
Sauer
,
Phys. Rev. Lett.
95
,
063004
(
2005
).
You do not currently have access to this content.