By means of molecular dynamics simulation, we investigate the interaction of picosecond-duration compression pulses excited by a flat impactor with flat and nano-structured rear surfaces of copper and aluminum samples. It is shown that protrusions on the rear surface can increase the threshold value of the impact velocity, leading to spallation. As the shock wave reaches the perturbed rear surface, an unloading on the lateral surfaces of the protrusions begins; it leads to an intensive plastic deformation in the surface layer of metal. A part of the compression pulse energy is spent on the plastic deformation that restricts the rarefaction wave amplitude and suppresses the spall fracture. An increase in threshold velocity can be observed for all investigated thicknesses of the targets. The increase is substantial with respect to comparability between the protrusion height and the compression pulse width (the impactor thickness). Another condition is the ratio of the protrusion cross-section to the total surface area, which should be neither small nor large–approximately 0.3–0.4 for the best case. At high protrusion heights (higher than the compression pulse width), as well as at large protrusion cross sections, instability develops on the rear surface of the target and is accompanied by mass ejection. The instability violates the rear surface integrity and restricts the threshold velocity, although the loss of integrity in this case goes through mass ejection, not spallation.

1.
G. I.
Kanel
,
V. E.
Fortov
, and
S. V.
Razorenov
, “
Shock waves in condensed-state physics
,”
Phys. Usp.
50
,
771
791
(
2007
).
2.
E. B.
Zaretsky
and
G. I.
Kanel
, “
Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures
,”
J. Appl. Phys.
117
,
195901
(
2015
).
3.
G. I.
Kanel
,
S. V.
Razorenov
,
G. V.
Garkushin
,
A. S.
Savinykh
, and
E. B.
Zaretsky
, “
Stress relaxation in vanadium under shock and shockless dynamic compression
,”
J. Appl. Phys.
118
,
045901
(
2015
).
4.
S. I.
Ashitkov
,
P. S.
Komarov
,
E. V.
Struleva
,
M. B.
Agranat
, and
G. I.
Kanel
, “
Mechanical and optical properties of vanadium under shock picosecond loads
,”
JETP Lett.
101
(
4
),
276
281
(
2015
).
5.
V. H.
Whitley
,
S. D.
McGrane
,
D. E.
Eakins
,
C. A.
Bolme
,
D. S.
Moore
, and
J. F.
Bingert
, “
The elastic-plastic response of aluminum films to ultrafast laser-generated shocks
,”
J. Appl. Phys.
109
,
013505
(
2011
).
6.
S. F.
Gnyusov
,
V. P.
Rotshtein
,
A. E.
Mayer
,
V. V.
Rostov
,
A. V.
Gunin
,
K. V.
Khishchenko
, and
P. R.
Levashov
, “
Simulation and experimental investigation of the spall fracture of 304L stainless steel irradiated by a nanosecond relativistic high-current electron beam
,”
Int. J. Fract.
199
,
59
70
(
2016
).
7.
A. Yu.
Kuksin
,
V. V.
Stegailov
, and
A. V.
Yanilkin
, “
Atomistic simulation of plasticity and fracture of nanocrystalline copper under high-rate tension
,”
Phys. Solid State
50
(
11
),
2069
2075
(
2008
).
8.
A.
Kuksin
,
G.
Norman
,
V.
Stegailov
,
A.
Yanilkin
, and
P.
Zhilyaev
, “
Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum
,”
Int. J. Fract.
162
(
1–2
),
127
136
(
2010
).
9.
V. V.
Pogorelko
and
A. E.
Mayer
, “
Influence of copper inclusions on the strength of aluminum matrix at high-rate tension
,”
Mater. Sci. Eng., A
642
,
351
359
(
2015
).
10.
V. V.
Pogorelko
and
A. E.
Mayer
, “
Influence of titanium and magnesium nanoinclusions on the strength of aluminum at high-rate tension: Molecular dynamics simulations
,”
Mater. Sci. Eng., A
662
,
227
240
(
2016
).
11.
V. S.
Krasnikov
and
A. E.
Mayer
, “
Plasticity driven growth of nanovoids and strength of aluminum at high rate tension: Molecular dynamics simulations and continuum modeling
,”
Int. J. Plast.
74
,
75
91
(
2015
).
12.
N. J.
Wagner
,
B. L.
Holian
, and
A. F.
Voter
, “
Molecular-dynamics simulations of two-dimensional materials at high strain rates
,”
Phys. Rev. A.
45
(
12
),
8457
8470
(
1992
).
13.
S. S.
Kraichikov
,
V. V.
Dremov
, and
Ph. A.
Sapozhnikov
, “
Molecular-dynamics investigation into influence of nano-particles in spall
,”
AIP Conf. Proc.
845
,
399
402
(
2006
).
14.
V. V.
Stegailov
and
A. V.
Yanilkin
, “
Structural transformations in single-crystal iron during shock-wave compression and tension: molecular dynamics simulation
,”
J. Exp. Theor. Phys.
104
(
6
),
928
935
(
2007
).
15.
Sh.-N.
Luo
,
T. C.
Germann
,
T. G.
Desai
,
D. L.
Tonks
, and
Q.
An
, “
Anisotropic shock response of columnar nanocrystalline Cu
,”
J. Appl. Phys.
107
,
123507
(
2010
).
16.
A. M.
Dongare
,
A. M.
Rajendran
,
B.
LaMattina
,
M. A.
Zikry
, and
D. W.
Brenner
, “
Atomic scale studies of spall behavior in nanocrystalline Cu
,”
J. Appl. Phys.
108
,
113518
(
2010
).
17.
L.
Huang
,
W. Z.
Han
,
Q.
An
,
W. A.
Goddard
 III
, and
S. N.
Luo
, “
Shock-induced consolidation and spallation of Cu nanopowders
,”
J. Appl. Phys.
111
,
013508
(
2012
).
18.
S. J.
Fensin
,
S. M.
Valone
,
E. K.
Cerreta
, and
G. T.
Gray
 III
, “
Influence of grain boundary properties on spall strength: Grain boundary energy and excess volume
,”
J. Appl. Phys.
112
,
083529
(
2012
).
19.
J. L.
Shao
,
P.
Wang
,
A. M.
He
,
S. Q.
Duan
, and
Ch. S.
Qin
, “
Molecular dynamics study on the failure modes of aluminium under decaying shock loading
,”
J. Appl. Phys.
113
,
163507
(
2013
).
20.
J. L.
Shao
,
P.
Wang
,
A. M.
He
,
S. Q.
Duan
, and
Ch. S.
Qin
, “
Influence of voids or He bubbles on the spall damage in single crystal Al
,”
Modell. Simul. Mater. Sci. Eng.
22
,
025012
(
2014
).
21.
E.
Lin
,
H.
Shi
, and
L.
Niu
, “
Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper
,”
Modell. Simul. Mater. Sci. Eng.
22
,
035012
(
2014
).
22.
F.
Yuan
,
Liu
Chen
,
P.
Jiang
, and
X.
Wu
, “
Twin boundary spacing effects on shock response and spall behaviors of hierarchically nanotwinned fcc metals
,”
J. Appl. Phys.
115
,
063509
(
2014
).
23.
Y.
Liao
,
M.
Xiang
,
X.
Zeng
, and
J.
Chen
, “
Molecular dynamics studies of the roles of microstructure and thermal effects in spallation of aluminum
,”
Mech. Mater.
84
,
12
27
(
2015
).
24.
K.
Mackenchery
,
R. R.
Valisetty
,
R. R.
Namburu
,
A.
Stukowski
,
A. M.
Rajendran
, and
A. M.
Dongare
, “
Dislocation evolution and peak spall strengths in single crystal and nanocrystalline Cu
,”
J. Appl. Phys.
119
,
044301
(
2016
).
25.
Y.
Chen
,
H.
Hu
,
T.
Tang
,
G.
Ren
,
Q.
Li
,
R.
Wang
, and
W. T.
Buttler
, “
Experimental study of ejecta from shock melted lead
,”
J. Appl. Phys.
111
,
053509
(
2012
).
26.
A.
Georgievskaya
and
V. A.
Raevsky
, “
Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect
,”
AIP Conf. Proc.
1426
,
1007
1010
(
2012
).
27.
J. L.
Shao
,
P.
Wang
,
A. M.
He
,
S. Q.
Duan
, and
Ch. S.
Qin
, “
Atomistic simulations of shock-induced microjet from a grooved aluminium surface
,”
J. Appl. Phys.
113
,
153501
(
2013
).
28.
G.
Ren
,
Y.
Chen
,
T.
Tang
, and
Q.
Li
, “
Ejecta production from shocked Pb surface via molecular dynamics
,”
J. Appl. Phys.
116
,
133507
(
2014
).
29.
S. A.
Dyachkov
,
A. N.
Parshikov
, and
V. V.
Zhakhovsky
, “
Shock-produced ejecta from tin: Comparative study by molecular dynamics and smoothed particle hydrodynamics methods
,”
J. Phys.: Conf. Ser.
653
,
012043
(
2015
).
30.
O.
Durand
and
L.
Soulard
, “
Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations
,”
J. Appl. Phys.
117
,
165903
(
2015
).
31.
F. J.
Cherne
,
J. E.
Hammerberg
,
M. J.
Andrews
,
V.
Karkhanis
, and
P.
Ramaprabhu
, “
On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum
,”
J. Appl. Phys.
118
,
185901
(
2015
).
32.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
33.
J.
Cai
and
Y. Y.
Ye
, “
Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys
,”
Phys. Rev. B
54
,
8398
(
1996
).
34.
Y.
Mishin
,
D.
Farkas
,
M. J.
Mehl
, and
D. A.
Papaconstantopoulos
, “
Interatomic potentials for monoatomic metals from experimental data and ab initio calculations
,”
Phys. Rev. B
59
,
3393
(
1999
).
35.
X.-Y.
Liu
,
P. P.
Ohotnicky
,
J. B.
Adams
,
C. Lane
Rohrer
, and
R. W.
Hyland
, Jr.
, “
Anisotropic surface segregation in Al-Mg alloys
,”
Surf. Sci.
373
,
357
370
(
1997
).
36.
M. S.
Daw
and
M. I.
Baskes
, “
Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
,”
Phys. Rev. B
29
,
6443
(
1984
).
37.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
38.
Ya. B.
Zel'dovich
and
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Academic Press
,
New York
,
1966
).
39.
E.
Moshe
,
S.
Eliezer
,
Z.
Henis
,
M.
Werdiger
,
E.
Dekel
,
Y.
Horovitz
,
S.
Maman
,
I. B.
Goldberg
, and
D.
Eliezer
, “
Experimental measurements of the strength of metals approaching the theoretical limit predicted by the equation of state
,”
Appl. Phys. Lett.
76
,
1555
(
2000
).
You do not currently have access to this content.