Organic Electrochemical Transistors (OECTs) were fabricated with two kinds of highly conducting polymer electrolytes, one with cations of small dimensions (Li+) and the other with cations of large dimensions (1-ethyl-3-methylimidazolium, EMI+). All OECTs exhibit transconductance values in the millisiemens range. Those with the larger EMI+ cations reach higher transconductance values and the saturated region of their I(V) characteristics extends to drain negative voltages of the order of −2 V without breakdown. These OECTs aim at potential applications for which it is relevant to use a solid polymer electrolyte instead of an aqueous electrolyte, namely, for integration in complex devices or in sensors and transducers where the electrolyte film may act as a membrane to prevent direct contact of the active material (PEDOT:PSS) with the biological media. The choice of electrolytes with cations of disparate sizes aims at assessing the nature (Faradaic or capacitive) of the processes occurring at the electrolyte/channel interface. The results obtained are consistent with a Faradaic-based operation mechanism.

1.
R. M.
Owens
and
G. G.
Malliaras
, “
Organic electronics at the interface with biology
,”
MRS Bull.
35
,
449
456
(
2010
).
2.
P.
Leleux
,
J.
Rivnay
,
T.
Lonjaret
,
J.-M.
Badier
,
C.
Bénar
,
T.
Hervé
,
P.
Chauvel
, and
G.
Malliaras
, “
Organic electrochemical transistors for clinical applications
,”
Adv. Healthcare Mater.
4
,
142
147
(
2015
).
3.
J.
Rivnay
,
R.
Owens
, and
G.
Malliaras
, “
The rise of organic bioelectronics
,”
Chem. Mater.
26
,
679
685
(
2014
).
4.
J.
Rivnay
,
M.
Ramuz
,
P.
Leleux
,
A.
Hama
,
M.
Huerta
, and
R.
Owens
, “
Organic electrochemical transistors for cell-based impedance sensing
,”
Appl. Phys. Lett.
106
,
043301
(
2015
).
5.
X.
Strakosas
,
M.
Bongo
, and
R.
Owens
, “
The organic electrochemical transistor for biological applications
,”
J. Appl. Polym. Sci.
132
,
41735
(
2015
).
6.
C.
Yao
,
Q.
Li
,
J.
Guo
,
F.
Yan
, and
I.-M.
Hsing
, “
Rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from rigid and flexible organic electrochemical transistor arrays for monitoring action potentials from electrogenic cells
,”
Adv. Healthcare Mater.
4
,
528
533
(
2015
).
7.
D.
Khodagholy
,
J.
Rivnay
,
M.
Sessolo
,
M.
Gurfinkel
,
P.
Leleux
,
L. H.
Jimison
,
E.
Stavrinidou
,
T.
Herve
,
S.
Sanaur
,
R. M.
Owens
, and
G. G.
Malliaras
, “
High transconductance organic electrochemical transistors
,”
Nat. Commun.
4
,
2133
(
2013
).
8.
J.
Rivnay
,
P.
Leleux
,
M.
Sessolo
,
D.
Khodagholy
,
T.
Hervé
,
M.
Fiocchi
, and
G.
Malliaras
, “
Organic electrochemical transistors with maximum transconductance at zero gate bias
,”
Adv. Mater.
25
,
7010
7014
(
2013
).
9.
C. D.
Dimitrakopoulos
and
P. R. L.
Malenfant
, “
Organic thin film transistors for large area electronics
,”
Adv. Mater.
14
,
99
117
(
2002
).
10.
M. J.
Panzer
and
C. D.
Frisbie
, “
Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors
,”
Adv. Mater.
20
,
3177
3180
(
2008
).
11.
D.
Nilsson
,
N.
Robinson
,
M.
Berggren
, and
R.
Forchheimer
, “
Electrochemical logic circuits
,”
Adv. Mater.
17
,
353
358
(
2005
).
12.
P.
Andersson
,
R.
Forchheimer
,
P.
Tehrani
, and
M.
Berggren
, “
Printable all-organic electrochromic active-matrix displays
,”
Adv. Funct. Mater.
17
,
3074
3082
(
2007
).
13.
M.
Demelas
,
E.
Scavetta
,
L.
Basiricò
,
R.
Rogani
, and
A.
Bonfiglio
, “
A deeper insight into the operation regime of all-polymeric electrochemical transistors
,”
Appl. Phys. Lett.
102
,
193301
(
2013
).
14.
N. D.
Robinson
,
P.-O.
Svensson
,
D.
Nilsson
, and
M.
Berggren
, “
On the current saturation observed in electrochemical polymer transistors
,”
J. Electrochem. Soc.
153
,
H39
H44
(
2006
).
15.
J.
Ouyanga
,
Q.
Xua
,
C.-W.
Chua
,
Y.
Yanga
,
G.
Lib
, and
J.
Shinar
, “
On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment
,”
Polymer
45
,
8443
8450
(
2004
).
16.
D. A.
Mengistie
,
P.-C.
Wangc
, and
C.-W.
Chu
, “
Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells
,”
J. Mater. Chem. A
1
,
9907
9915
(
2013
).
17.
M.
Echeverri
,
N.
Kim
, and
T.
Kyu
, “
Ionic conductivity in relation to ternary phase diagram of poly(ethylene oxide), succinonitrile, and lithium bis(trifluoromethane)sulfonimide blends
,”
Macromolecules
45
,
6068
6077
(
2012
).
18.
M. A. B. H.
Susan
,
T.
Kaneko
,
A.
Noda
, and
M.
Watanabe
, “
Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes
,”
J. Am. Chem. Soc.
127
,
4976
4983
(
2005
).
19.
Y.-S.
Ye
,
J.
Rick
, and
B.-J.
Hwang
, “
Ionic liquid polymer electrolytes
,”
J. Mater. Chem., A
1
,
2719
(
2013
).
20.
S.
Seki
,
M. A.
Susan
,
T.
Kaneko
,
H.
Tokuda
,
A.
Noda
, and
M.
Watanabe
, “
Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts
,”
J. Phys. Chem. B
109
,
3886
3892
(
2005
).
21.
G.
Tarabella
,
C.
Santato
,
S. Y.
Yang
,
S.
Iannotta
,
G. G.
Malliaras
, and
F.
Cicoira
, “
Effect of the gate electrode on the response of organic electrochemical transistors
,”
Appl. Phys. Lett.
97
,
123304
(
2010
).
22.
D. A.
Bernards
and
G. G.
Malliaras
, “
Steady-state and transient behavior of organic electrochemical transistors
,”
Adv. Funct. Mater.
17
,
3538
3544
(
2007
).
23.
G.
Tarabella
,
F. M.
Mohammadi
,
N.
Coppedè
,
F.
Barbero
,
S.
Iannotta
,
C.
Santato
, and
F.
Cicoira
, “
New opportunities for organic electronics and bioelectronics: ions in action
,”
Chem. Sci.
4
,
1395
1409
(
2013
).
24.
L.
Basiricò
,
P.
Cosseddu
,
B.
Fraboni
, and
A.
Bonfiglio
, “
Inkjet printing of transparent, flexible, organic transistors
,”
Thin Solid Films
520
,
1291
1294
(
2011
).
25.
J. D.
Stenger-Smith
,
C. K.
Webber
,
N.
Anderson
,
A. P.
Chafin
,
K.
Zong
, and
J. R.
Reynolds
, “
Poly(3,4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes
,”
J. Electrochem. Soc.
149
,
A973
(
2002
).
26.
E.
Stavrinidou
,
P.
Leleux
,
H.
Rajaona
,
D.
Khodagholy
,
J.
Rivnay
,
M.
Lindau
,
S.
Sanaur
, and
G. G.
Malliaras
, “
Direct measurement of ion mobility in a conducting polymer
,”
Adv. Mater.
25
,
4488
4493
(
2013
).
27.
E.
Stavrinidou
,
M.
Sessolo
,
B.
Winther-Jensen
,
S.
Sanaur
, and
G. G.
Malliaras
, “
A physical interpretation of impedance at conducting polymer/electrolyte junctions
,”
AIP Adv.
4
,
017127
(
2014
).
28.
F.
Cicoira
,
M.
Sessolo
,
O.
Yaghmazadeh
,
J. A.
DeFranco
,
S. Y.
Yang
, and
G. G.
Malliaras
, “
Influence of device geometry on sensor characteristics of planar organic electrochemical transistors
,”
Adv. Mater.
22
,
1012
1016
(
2010
).
29.
J.
Wang
and
A.
Bard
, “
On the absence of a diffuse double layer at electronically conductive polymer film electrodes. Direct evidence by Atomic Force Microscopy of complete charge compensation
,”
J. Am. Chem. Soc.
123
,
498
499
(
2001
).
30.
V. N.
Prigodin
,
F. C.
Hsu
,
Y. M.
Kim
,
J. H.
Park
,
O.
Waldmann
, and
A. J.
Epstein
, “
Electric field control of charge transport in doped polymers
,”
Synth. Met.
153
,
157
(
2005
).

Supplementary Material

You do not currently have access to this content.