Pulsed domain wall movement is studied here in Ni80Fe20 nanowires on SiO2, using a fully integrated electrostatic, thermoelectric, and micromagnetics solver based on the Landau-Lifshitz-Bloch equation, including Joule heating, anisotropic magneto-resistance, and Oersted field contributions. During the applied pulse, the anisotropic magneto-resistance of the domain wall generates a dynamic heat gradient, which increases the current-driven velocity by up to 15%. Using a temperature-dependent conductivity, significant differences are found between the constant voltage-pulsed and constant current-pulsed domain wall movement: constant voltage pulses are shown to be more efficient at displacing domain walls whilst minimizing the increase in temperature, with the total domain wall displacement achieved over a fixed pulse duration having a maximum with respect to the driving pulse strength.

1.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, “
Magnetic domain-wall racetrack memory
,”
Science
320
,
190
(
2008
).
2.
D.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
, “
Magnetic domain-wall logic
,”
Science
309
,
1688
(
2005
).
3.
Z.
Li
and
S.
Zhang
, “
Domain-wall dynamics and spin-wave excitations with spin-transfer torques
,”
Phys. Rev. Lett.
92
,
207203
(
2004
).
4.
G.
Tatara
and
H.
Kohno
, “
Theory of current-driven domain wall motion: Spin transfer versus momentum transfer
,”
Phys. Rev. Lett.
92
,
086601
(
2004
).
5.
M.
Kläui
,
C. A. F.
Vaz
,
J. A. C.
Bland
,
W.
Wernsdorfer
,
G.
Faini
,
E.
Cambril
,
L. J.
Heyderman
,
F.
Nolting
, and
U.
Rüdiger
, “
Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures
,”
Phys. Rev. Lett.
94
,
106601
(
2005
).
6.
S.
Lepadatu
,
M. C.
Hickey
,
A.
Potenza
,
H.
Marchetto
,
T. R.
Charlton
,
S.
Langridge
,
S. S.
Dhesi
, and
C. H.
Marrows
, “
Experimental determination of spin-transfer torque nonadiabaticity parameter and spin polarization in permalloy
,”
Phys. Rev. B
79
(
9
),
094402
(
2009
).
7.
A.
Yamaguchi
,
S.
Nasu
,
H.
Tanigawa
,
T.
Ono
,
K.
Miyake
,
K.
Mibu
, and
T.
Shinjo
, “
Effect of Joule heating in current-driven domain wall motion
,”
Appl. Phys. Lett.
86
,
012511
(
2005
).
8.
M.
Hayashi
,
L.
Thomas
,
C.
Rettner
,
R.
Moriya
,
X.
Jiang
, and
S. S. P.
Parkin
, “
Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires
,”
Phys. Rev. Lett.
97
,
207205
(
2006
).
9.
J.
Curiale
,
A.
Lemaitre
,
T.
Niazi
,
G.
Faini
, and
V.
Jeudy
, “
Joule heating and current-induced domain wall motion
,”
J. Appl. Phys.
112
,
103922
(
2012
).
10.
D.
Hinzke
and
U.
Nowak
, “
Domain wall motion by the magnonic spin Seebeck effect
,”
Phys. Rev. Lett.
107
,
027205
(
2011
).
11.
K.
Uchida
,
S.
Takahashi
,
K.
Harii
,
J.
Ieda
,
W.
Koshibae
,
K.
Ando
,
S.
Maekawa
, and
E.
Saitoh
, “
Observation of the spin Seebeck effect
,”
Nature
455
,
778
(
2008
).
12.
J.
Torrejon
,
G.
Malinowski
,
M.
Pelloux
,
R.
Weil
,
A.
Thiaville
,
J.
Curiale
,
D.
Lacour
,
F.
Montaigne
, and
M.
Hehn
, “
Unidirectional thermal effects in current-induced domain wall motion
,”
Phys. Rev. Lett.
109
,
106601
(
2012
).
13.
H.
Fangohr
,
D. S.
Chernyshenko
,
M.
Franchin
,
T.
Fischbacher
, and
G.
Meier
, “
Joule heating in nanowires
,”
Phys. Rev. B
84
,
054437
(
2011
).
14.
S.
Moretti
,
V.
Raposo
, and
E.
Martinez
, “
Influence of Joule heating on current-induced domain wall depinning
,”
J. Appl. Phys.
119
,
213902
(
2016
).
15.
V.
Raposo
,
S.
Moretti
,
M. A.
Hernandez
, and
E.
Martinez
, “
Domain wall dynamics along curved strips under current pulses: The influence of Joule heating
,”
Appl. Phys. Lett.
108
,
042405
(
2016
).
16.
G. E. W.
Bauer
,
E.
Saitoh
, and
B. J.
van Wees
, “
Spin caloritronics
,”
Nat. Mater.
11
,
391
(
2012
).
17.
E.
Ramos
,
C.
López
,
J.
Akerman
,
M.
Muñoz
, and
J. L.
Prieto
, “
Joule heating in ferromagnetic nanostripes with a notch
,”
Phys. Rev. B
91
,
214404
(
2015
).
18.
H. S.
Carslaw
and
J. C.
Jaeger
,
Conduction of Heat in Solids
(
Oxford University Press
,
1959
).
19.
C.-Y.
You
,
I. M.
Sung
, and
B.-K.
Joe
, “
Analytic expression for the temperature of the current-heated nanowire for the current-induced domain wall motion
,”
Appl. Phys. Lett.
89
,
222513
(
2006
).
20.
K.-J.
Kim
,
J.-C.
Lee
,
S.-B.
Choe
, and
K.-H.
Shin
, “
Joule heating in ferromagnetic nanowires: Prediction and observation
,”
Appl. Phys. Lett.
92
,
192509
(
2008
).
21.
L. D.
Landau
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Electrodynamics of Continuous Media
(
Butterworth-Heinemann
,
1984
), Vol. 8.
22.
R. M.
Bozorth
,
Ferromagnetism
(
D. van Nostrand
,
New York
,
1951
).
23.
T. R.
McGuire
and
R. I.
Potter
, “
Anisotropic magnetoresistance in ferromagnetic 3d alloys
,”
IEEE Trans. Magn.
11
,
1018
(
1975
).
24.
S.
Lepadatu
, “
Effective field model of roughness in magnetic nano-structures
,”
J. Appl. Phys.
118
,
243908
(
2015
).
25.
D. M.
Young
,
Jr., Iterative Solution of Large Linear Systems
(
Academic Press
,
1971
).
26.
B.
Krüger
, “
Current-driven magnetization dynamics: Analytical modelling and numerical simulation
,” Ph.D. dissertation,
Hamburg
,
2011
.
27.
J.
Crank
,
The Mathematics of Diffusion
(
Clarendon Press
,
Oxford
,
1975
).
28.

The LLG and LLB equations are evaluated here using the RK4 method with fixed time steps up to 1 ps, whilst the FTCS scheme is used with fixed time steps up to 0.2 ps. Simulations with time steps halved result in virtually identical results.

29.
C. Y.
Ho
,
M. W.
Ackerman
,
K. Y.
Wu
,
T. N.
Havill
,
R. H.
Bogaard
,
R. A.
Matula
,
S. G.
Oh
, and
H. M.
James
, “
Electrical resistivity of ten selected binary alloy systems
,”
J. Phys. Chem. Ref. Data
12
,
183
(
1983
).
30.
D.
Bonnenberg
,
K. A.
Hempel
, and
H. P. J.
Wijn
,
Springer Materials-The Landolt-Börnstein Database
(
Springer
,
2010
).
31.
W. F.
Brown
, Jr.
,
Micromagnetics
(
Interscience
,
New York
,
1963
).
32.
D. A.
Garanin
, “
Fokker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets
,”
Phys. Rev. B
55
,
3050
(
1997
).
33.
C.
Schieback
,
D.
Hinzke
,
M.
Kläui
,
U.
Nowak
, and
P.
Nielaba
, “
Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation
,”
Phys. Rev. B
80
,
214403
(
2009
).
34.
P.
Yu
,
X. F.
Jin
,
J.
Kudrnovský
,
D. S.
Wang
, and
P.
Bruno
, “
Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green's function methods
,”
Phys. Rev. B
77
,
054431
(
2008
).
35.
U.
Atxitia
,
O.
Chubykalo-Fesenko
,
N.
Kazantseva
,
D.
Hinzke
,
U.
Nowak
, and
R. W.
Chantrell
, “
Micromagnetic modeling of laser-induced magnetization dynamics using the Landau-Lifshitz-Bloch equation
,”
Appl. Phys. Lett.
91
,
232507
(
2007
).
36.
A.
Thiaville
,
Y.
Nakatani
,
J.
Miltat
, and
Y.
Suzuki
, “
Micromagnetic understanding of current-driven domain wall motion patterned nanowires
,”
Europhys. Lett.
69
,
990
(
2005
).
37.
L.
Thomas
,
R.
Moriya
,
C.
Rettner
, and
S. S. P.
Parkin
, “
Dynamics of magnetic domain walls under their own inertia
,”
Science
330
,
1810
(
2010
).
38.
A.
Slachter
,
F. L.
Bakker
, and
B. J.
van Wees
, “
Anomalous Nernst and anisotropic magnetoresistive heating in a lateral spin valve
,”
Phys. Rev. B
84
,
020412(R)
(
2011
).
39.
A.
Hojem
,
D.
Wesenberg
, and
B. L.
Zink
, “
Thermal spin injection and interface insensitivity in permalloy/aluminum metallic nonlocal spin valves
,”
Phys. Rev. B
94
,
024426
(
2016
).
You do not currently have access to this content.