The formation of a new compound with stoichiometry As4O6·2He at relatively low pressure (3 GPa) has been recently reported when arsenolite (As4O6) powder is compressed with helium as a pressure-transmitting medium. In this work, we study the lattice dynamics of As4O6 and As4O6·2He at high pressures from an experimental and theoretical perspective by means of Raman scattering measurements and ab initio calculations and report the theoretical elastic properties of both compounds at high pressure. Raman scattering measurements show a completely different behaviour of As4O6 and As4O6·2He at high pressures. Furthermore, the theoretical calculation of phonon dispersion curves and elastic stiffness coefficients at high pressure in both compounds allow us to discuss their dynamical and mechanical stability under hydrostatic compression. Both compounds are dynamically stable even above 35 GPa, but As4O6 becomes mechanically unstable at pressures beyond 19.7 GPa. These results allow explaining the pressure-induced amorphization of As4O6 found experimentally above 15–20 GPa and the lack of observation of any instability in As4O6·2He up to the highest studied pressure (30 GPa).

1.
S. C.
Grund
,
K.
Hanusch
, and
H.
Wolf
, “
Arsenic and arsenic compounds
,” in
Ullmann's Encyclopedia of Industrial Chemistry
(
Wiley-VCH
,
2005
).
2.
M.
Gielen
and
E. R.
Tiekink
,
Metallotherapeutic Drugs and Metal-Based Diagnostic Agents
(
John Wiley & Sons
,
2005
), p.
298
.
3.
J.
Liu
,
Y.
Lu
,
Q.
Wu
,
R. A.
Goyer
, and
M. P.
Waalkes
,
J. Pharmacol. Exp. Ther.
326
,
363
(
2008
).
4.
G.
Brauer
,
Handbook of Preparative Inorganic Chemistry
(
Academic Press
,
1963
).
5.
G. V.
Gibbs
,
A. F.
Wallace
,
D. F.
Cox
,
P. M.
Dove
,
R. T.
Downs
,
N. L.
Ross
, and
K. M.
Rosso
,
J. Phys. Chem. A
113
,
736
(
2009
).
6.
P. A.
Gunka
,
Z.
Gontarz
, and
J.
Zachara
,
Phys. Chem. Chem. Phys.
17
,
11020
(
2015
).
7.
F.
Pertlik
,
Czech. J. Phys.
28
,
170
(
1978
).
8.
J. A.
Sans
,
F. J.
Manjón
,
C.
Popescu
,
V. P.
Cuenca-Gotor
,
O.
Gomis
,
A.
Muñoz
,
P.
Rodríguez-Hernández
,
J.
Pellicer-Porres
,
A. L. J.
Pereira
,
D.
Santamaría-Pérez
, and
A.
Segura
, e-print arXiv:1502.04279.
9.
P. A.
Gunka
,
K. F.
Dziubek
,
A.
Gladysiak
,
M.
Dranka
,
J.
Piechota
,
M.
Hanfland
,
A.
Katrusiak
, and
J.
Zachara
,
Cryst. Growth Des.
15
,
3740
(
2015
).
10.
J. A.
Sans
,
F. J.
Manjón
,
C.
Popescu
,
V. P.
Cuenca-Gotor
,
O.
Gomis
,
A.
Muñoz
,
P.
Rodríguez-Hernández
,
J.
Contreras-García
,
J.
Pellicer-Porres
,
A. L. J.
Pereira
,
D.
Santamaría-Pérez
, and
A.
Segura
,
Phys. Rev. B
93
,
054102
(
2016
).
11.
A.
Grzechnik
,
J. Solid State Chem.
144
,
416
(
1999
).
12.
E.
Soignard
,
S. A.
Amin
,
Q.
Mei
,
C. J.
Benmore
, and
J. L.
Yarger
,
Phys. Rev. B
77
,
144113
(
2008
).
13.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
,
J. Geophys. Res.
91
,
4673
, doi: (
1986
).
14.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
15.
P. E.
Blochl
,
Phys. Rev. B
50
,
17953
(
1994
).
16.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
);
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
17.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrow
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
18.
K.
Parlinski
,
Z. Q.
Li
, and
Y.
Kawazoe
,
Phys. Rev. Lett.
78
,
4063
(
1997
).
19.
N.
Chetty
,
A.
Muñoz
, and
R. M.
Martin
,
Phys. Rev. B.
40
,
11934
(
1989
).
20.
Y.
Le Page
and
P.
Saxe
,
Phys. Rev. B
65
,
104104
(
2002
).
21.
O.
Beckstein
,
J. E.
Klepeis
,
G. L. W.
Hart
, and
O.
Pankratov
,
Phys. Rev. B
63
,
134112
(
2001
).
22.
J. F.
Nye
,
Physical Properties of Crystals. Their Representation by Tensor and Matrices
(
Oxford University Press
,
1957
).
23.
P.
Ballirano
and
A.
Maras
,
Z. Kristallogr. - New Cryst. Struct.
217
,
177
(
2002
).
24.
E.
Kroumova
,
M. I.
Aroyo
,
J. M.
Perez-Mato
,
A.
Kirov
,
C.
Capillas
,
S.
Ivantchev
, and
H.
Wondratschek
,
Phase Transitions
76
,
155
(
2003
).
25.
I. R.
Beattie
,
K. M. S.
Livingston
,
G. A.
Ozin
, and
D. J.
Reynolds
,
J. Chem. Soc. A
449
(
1970
).
26.
J. O.
Jensen
,
S. J.
Gilliam
,
A.
Banerjee
,
D.
Zeroka
,
S. J.
Kirkby
, and
C. N.
Merrow
,
J. Mol. Struct.: THEOCHEM
664–665
,
145
(
2003
).
27.
H. A.
Szymansky
,
L.
Marabella
,
J.
Hoke
, and
J.
Harter
,
Appl. Spectrosc.
22
,
297
(
1968
).
28.
S. B.
Brumbach
and
G. M.
Rosenblatt
,
J. Chem. Phys.
56
,
3110
(
1972
).
29.
D. J.
Lockwood
,
J. Solution Chem.
29
,
1039
(
2000
).
30.
S. J.
Gilliam
,
C. N.
Merrow
,
S. J.
Kirkby
,
J. O.
Jensen
,
D.
Zeroka
, and
A.
Banerjee
,
J. Solid State Chem.
173
,
54
(
2003
).
31.
J. A.
Sans
,
F. J.
Manjón
,
C.
Popescu
,
A.
Muñoz
,
P.
Rodríguez-Hernández
,
J. L.
Jordá
, and
F.
Rey
,
J. Phys.: Condens. Matter
28
,
475403
(
2016
).
32.
M.
Born
,
Proc. Cambridge Philos. Soc.
36
,
160
(
1940
).
33.
J. D.
Clayton
,
Nonlinear Mechanics of Crystals, Solid Mechanics and Its Applications Vol. 177
(
Springer
,
New York
,
2010
).
34.
D. C.
Wallace
, “
Thermoelastic theory of stressed crystals and higher-order elastic constants
,” in
Solid State Physics
, edited by
F. S.
Henry Ehrenreich
,
D.
Turnbull
, and
F.
Seitz
(
Academic Press
,
1970
), Vol.
25
, pp.
301
404
.
35.
J.
Wang
,
S.
Yip
,
S. R.
Phillpot
, and
D.
Wolf
,
Phys. Rev. Lett.
71
,
4182
(
1993
).
36.
J.
Wang
,
J.
Li
,
S.
Yip
,
S.
Phillpot
, and
D.
Wolf
,
Phys. Rev. B
52
,
12627
(
1995
).
37.
Z.
Zhou
and
B.
Joós
,
Phys. Rev. B
54
,
3841
(
1996
).
38.
B. B.
Karki
,
L.
Stixrude
, and
R. M.
Wentzcovitch
,
Rev. Geophys.
39
,
507
, doi: (
2001
).
39.
O. M.
Krasil'nikov
,
M. P.
Belov
,
A. V.
Lugovskoy
,
I. Yu.
Mosyagin
, and
Yu. Kh.
Vekilov
,
Comput. Mater. Sci.
81
,
313
(
2014
).
40.
W.
Voigt
,
Lehrbuch der Kristallphysik
(
B. G. Teubner
,
Leipzig, Germany
,
1928
).
41.
A.
Reuss
,
Z. Angew. Math. Mech.
9
,
49
(
1929
).
42.
R.
Hill
,
Proc. Phys. Soc., London, Sect. A
65
,
349
(
1952
).
43.
O.
Gomis
,
D.
Santamaría-Pérez
,
J.
Ruiz-Fuertes
,
J. A.
Sans
,
R.
Vilaplana
,
H. M.
Ortiz
,
B.
García-Domene
,
F. J.
Manjón
,
D.
Errandonea
,
P.
Rodríguez-Hernández
,
A.
Muñoz
, and
M.
Mollar
,
J. Appl. Phys.
116
,
133521
(
2014
).
44.
R.
Caracas
and
T. B.
Ballaran
,
Phys. Earth Planet. Inter.
181
,
21
(
2010
).
45.
Q. J.
Liu
,
Z. T.
Liu
, and
L. P.
Feng
,
Commun. Theor. Phys.
56
,
779
(
2011
).
46.
V. V.
Brazhkin
,
A. G.
Lyapin
, and
R. J.
Hemley
,
Philos. Mag. A
82
,
231
(
2002
).
47.
G. N.
Greaves
,
A. L.
Greer
,
R. S.
Lakes
, and
T.
Rouxel
,
Nat. Mater.
10
,
823
(
2011
).
48.
49.
V.
Tvergaard
and
J. W.
Hutchinson
,
J. Am. Ceram. Soc.
71
,
157
(
1988
).
50.
Y.
Tian
,
B.
Xu
, and
Z.
Zhao
,
Int. J. Refract. Met. Hard Mater.
33
,
93
(
2012
).
51.
J. P.
Poirier
,
Introduction to the Physics of the Earth's Interior
(
Cambridge University Press
,
2000
).
52.
O. L.
Anderson
,
J. Phys. Chem. Solids
24
,
909
(
1963
).
53.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
1954
),
p. 140
.
54.
D. C.
Wallace
,
Phys. Rev.
162
,
776
(
1967
).
55.
G.
Grimvall
,
B.
Magyari-Köpe
,
V.
Ozolinš
, and
K. A.
Persson
,
Rev. Mod. Phys.
84
,
945
(
2012
).
56.
H.
Wang
and
M.
Li
,
J. Phys.: Condens. Matter
24
,
245402
(
2012
).

Supplementary Material

You do not currently have access to this content.