We have studied the electronic transport properties of armchair graphene nanoribbons (AGNRs) bridged between two metal electrodes or supported on insulating substrates in 10 nm-scale devices using the first-principles calculations. The two metal species of Ti and Au are examined as metal electrodes and are compared. The current densities through the AGNR-Ti contact are about 10 times greater than those through the AGNR-Au contact, even though the AGNR width reaches 12 nm. For the insulating substrates, we have investigated the dependence of the channel length on the transport properties using models with two channel lengths of 15.1 and 9.91 nm. Regardless of the channel length, the on/off current ratio is 105 for the AGNRs on an O-terminated surface. This ratio is consistent with the recent experiments and is less by factors of 1016 for the 15.1 nm channel length and 108 for the 9.91 nm channel length compared to the freestanding AGNR.

1.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Lett.
97
,
143514
(
2010
).
2.
J. A.
Robinson
,
M.
Labella
,
M.
Zhu
,
M.
Hollander
,
R.
Kasarda
,
Z.
Hughes
,
K.
Trumbull
,
R.
Cavalero
, and
D.
Snyder
,
Appl. Phys. Lett.
98
,
53103
(
2011
).
3.
R.
Nouchi
,
T.
Saito
, and
K.
Tanigaki
,
J. Appl. Phys.
111
,
84314
(
2012
).
4.
R.
Ifuku
,
K.
Nagashio
,
T.
Nishimura
, and
A.
Toriumi
,
Appl. Phys. Lett.
103
,
33514
(
2013
).
5.
M.
Politou
,
I.
Asselberghs
,
I.
Radu
,
T.
Conard
,
O.
Richard
,
C. S.
Lee
,
K.
Martens
,
S.
Sayan
,
C.
Huyghebaert
,
Z.
Tokei
,
S.
De Gendt
,
M.
Heyns
,
M.
Politou
,
I.
Asselberghs
,
I.
Radu
,
T.
Conard
,
O.
Richard
,
C. S.
Lee
,
K.
Martens
,
S.
Sayan
,
C.
Huyghebaert
, and
Z.
Tokei
,
Appl. Phys. Lett.
107
,
153104
(
2015
).
6.
E.
Watanabe
,
A.
Conwill
,
D.
Tsuya
, and
Y.
Koide
,
Diamond Relat. Mater.
24
,
171
(
2012
).
7.
P. A.
Khomyakov
,
G.
Giovannetti
,
P. C.
Rusu
,
G.
Brocks
,
J.
Van Den Brink
, and
P. J.
Kelly
,
Phys. Rev. B
79
,
195425
(
2009
).
8.
Q.
Ran
,
M.
Gao
,
X.
Guan
,
Y.
Wang
, and
Z.
Yu
,
Appl. Phys. Lett.
94
,
103511
(
2009
).
9.
C.
Gong
,
G.
Lee
,
B.
Shan
,
E. M.
Vogel
,
R. M.
Wallace
, and
K.
Cho
,
J. Appl. Phys.
108
,
123711
(
2010
).
10.
Y.
Takagi
and
S.
Okada
,
Jpn. J. Appl. Phys., Part 1
51
,
85102
(
2012
).
11.
K.
Stokbro
,
M.
Engelund
, and
A.
Blom
,
Phys. Rev. B
85
,
165442
(
2012
).
12.
H.
Liu
,
H.
Kondo
, and
T.
Ohno
,
Phys. Rev. B
86
,
155434
(
2012
).
13.
H.
Liu
,
H.
Kondo
, and
T.
Ohno
,
J. Chem. Phys.
139
,
74703
(
2013
).
14.
H.
Jippo
,
M.
Ohfuchi
, and
S.
Okada
,
e-J. Surf. Sci. Nanotechnol.
13
,
54
(
2015
).
15.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
16.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
,
351
(
2008
).
17.
X.
Du
,
I.
Skachko
,
A.
Barker
, and
E. Y.
Andrei
,
Nat. Nanotechnol.
3
,
491
(
2008
).
18.
K.
Nagashio
and
T.
Yamashita
,
J. Appl. Phys.
110
,
24513
(
2011
).
19.
M.-W.
Lin
,
C.
Ling
,
Y.
Zhang
,
H. J.
Yoon
,
M. M.-C.
Cheng
,
L. A.
Agapito
,
N.
Kioussis
,
N.
Widjaja
, and
Z.
Zhou
,
Nanotechnology
22
,
265201
(
2011
).
20.
X.
Li
,
X.
Wang
,
L.
Zhang
,
S.
Lee
, and
H.
Dai
,
Science
319
,
1229
(
2008
).
21.
Y.-J.
Kang
,
J.
Kang
, and
K. J.
Chang
,
Phys. Rev. B
78
,
115404
(
2008
).
22.
M. Z.
Hossain
,
Appl. Phys. Lett.
95
,
143125
(
2009
).
23.
P.
Shemella
and
S. K.
Nayak
,
Appl. Phys. Lett.
94
,
32101
(
2009
).
24.
N. T.
Cuong
,
M.
Otani
, and
S.
Okada
,
Phys. Rev. Lett.
106
,
106801
(
2011
).
25.
C.-J.
Yang
,
S.-J.
Huang
, and
C.-L.
Kuo
,
Appl. Phys. Lett.
101
,
253107
(
2012
).
26.
H.
Jippo
,
T.
Ozaki
, and
M.
Ohfuchi
,
Appl. Phys. Express
7
,
25101
(
2014
).
27.
L. T.
Zhuravlev
,
Colloids Surf., A
173
,
1
(
2000
).
28.
29.
T.
Ozaki
,
K.
Nishio
, and
H.
Kino
,
Phys. Rev. B
81
,
35116
(
2010
).
30.
T. V. T.
Duy
and
T.
Ozaki
,
Comput. Phys. Commun.
185
,
153
(
2014
).
31.
T. V. T.
Duy
and
T.
Ozaki
,
Comput. Phys. Commun.
185
,
777
(
2014
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
33.
I.
Morrison
,
D. M.
Bylander
, and
L.
Kleinman
,
Phys. Rev. B
47
,
6728
(
1993
).
34.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).
35.
36.
H.
Jippo
and
M.
Ohfuchi
,
J. Appl. Phys.
113
,
183715
(
2013
).
37.
Y.
Lu
and
J.
Guo
,
Nano Res.
3
,
189
(
2010
).
38.
T.
Yamasaki
,
K.
Kato
, and
T.
Uda
,
Phys. Rev. Lett.
91
,
146102
(
2003
).
39.
R. H.
Miwa
,
T. M.
Schmidt
,
W. L.
Scopel
, and
A.
Fazzio
,
Appl. Phys. Lett.
99
,
163108
(
2011
).
40.
A. N.
Rudenko
,
F. J.
Keil
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. B
84
,
85438
(
2011
).

Supplementary Material

You do not currently have access to this content.