We have combined a fast-valve device with vacuum technology for implementing a new method that allows introducing liquid solutions in an ultra-high vacuum chamber in the form of very small droplets. This technical development allows the easy deposition of (bio) organic molecules or small nanoparticles on a surface in a fully in-situ process, avoiding possible contamination due to the handle of the material. Moreover, our experimental set-up is suitable for any liquid and does not require any voltage application as in electrospray. We can easily change the operating regime from liquid droplet injection to the formation of a highly dispersive jet of micro-droplets by exclusively adjusting external parameters. Due to the nature of the injection process, the operational protocol makes possible the deposition of delicate molecular species that cannot be thermally sublimated. In particular, we have used this system to study the deposition of adenosine triphosphate on Cu(110). The structure of the layer was analyzed by X-ray photoemission spectroscopy and the evolution of the signal from the deposited molecule with the number of injections indicates that the molecular coverage can be controlled with submonolayer precision.

1.
H.
Lüth
,
Solid Surfaces, Interfaces and Thin Films
(
Springer-Verlag
,
2010
).
2.
E. B. K.
Jousten
, in
Handbook of Vacuum Technology
, edited by
K.
Jousten
(
Wiley-VCH
,
2008
).
3.
P. F.
Man
and
S. J.
Pace
, “
Electrospray deposition: Devices and methods thereof
,” U.S. patent 8,007,871 B2 (NanoSelect, Inc.,
2011
), p.
23
.
4.
J. C.
Swarbrick
,
J. B.
Taylor
, and
J. N.
O'Shea
, “
Electrospray deposition in vacuum
,”
Appl. Surf. Sci.
252
(
15
),
5622
5626
(
2006
).
5.
C.
Hamann
 et al., “
Ultrahigh vacuum deposition of organic molecules by electrospray ionization
,”
Rev. Sci. Instrum.
82
(
3
),
033903
(
2011
).
6.
S. K.
Park
 et al., “
High mobility solution processed 6, 13-bis (triisopropyl-silylethynyl) pentacene organic thin film transistors
,”
Appl. Phys. Lett.
91
(
6
),
063514
(
2007
).
7.
W.
Pisula
 et al., “
A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene
,”
Adv. Mater.
17
(
6
),
684
689
(
2005
).
8.
M.
Amati
,
M. K.
Abyaneh
, and
L.
Gregoratti
, “
Dynamic high pressure: A novel approach toward near ambient pressure photoemission spectroscopy and spectromicroscopy
,”
J. Instrum.
8
(
5
),
T05001
(
2013
).
9.
T.
Kawai
,
H.
Tanaka
, and
T.
Nakagawa
, “
Low dimensional self-organization of DNA-base molecules on Cu(111) surfaces
,”
Surf. Sci.
386
,
124
(
1997
).
10.
H.
Tanaka
and
T.
Kawai
, “
Scanning tunneling microscopy imaging and manipulation of DNA oligomer adsorbed on Cu(111) surfaces by pulse injection method
,”
J. Vac. Sci. Technol., B
15
(
3
),
602
(
1997
).
11.
H.
Tanaka
 et al., “
High-resolution scanning tunneling microscopy imaging of DNA molecules on Cu(111) surfaces
,”
Surf. Sci.
432
(
3
),
L611
L616
(
1999
).
12.
T.
Kanno
 et al., “
Real space observation of double-helix DNA structure using a low temperature scanning tunneling microscopy
,”
Jpn. J. Appl. Phys., Part 2
38
(
6A
),
L606
(
1999
).
13.
H.
Kasai
 et al., “
STM observation of single molecular chains of pi conjugated polymers
,”
Chem. Lett.
31
(
7
),
696
697
(
2002
).
14.
S.
Keni-chi
 et al., “
A mandala-patterned bandanna-shaped porphyrin oligomer, C1244H1350N84Ni20O88, having a unique size and geometry
,”
Chem. Lett.
28
(
11
),
1193
1194
(
1999
).
15.
H.
Tanaka
and
T.
Kawai
, “
Partial sequencing of a single DNA molecule with a scanning tunnelling microscope
,”
Nat. Nanotechnol.
4
(
8
),
518
522
(
2009
).
16.
H.
Tanaka
and
T.
Kawai
, “
Visualization of detailed structures within DNA
,”
Surf. Sci.
539
(
1–3
),
L531
L536
(
2003
).
17.
M. F. W.
Nimmrich
,
Atomic-Scale Characterization of Diamond Surfaces and Fullerene Self-Assembly
(
Johannes Gutenberg-Mainz
,
2012
), p.
165
.
18.
M.
Yusuke
 et al., “
Fabrication of ionic liquid ultrathin film by sequential deposition
,”
Jpn. J. Appl. Phys., Part 1
53
(
5S1
),
05FY01
(
2014
).
19.
M.
Manin
 et al., “
Deposition of MgO thin film by liquid pulsed injection MOCVD
,”
Surf. Coat. Technol.
200
(
5
),
1424
1429
(
2005
).
20.
M.
Burriel
 et al., “
Growth kinetics, composition, and morphology of Co3O4 thin films prepared by pulsed liquid-injection MOCVD
,”
Chem. Vap. Deposition
11
(
2
),
106
111
(
2005
).
21.
R.
Bernard
 et al., “
Ultrahigh vacuum deposition of CdSe nanocrystals on surfaces by pulse injection
,”
J. Phys.: Condens. Matter
16
(
43
),
7565
(
2004
).
22.
A.
Eisenstein
 et al., “
Pulsed-dosing controls self-assembly: 1-Bromopentane on Si(111)-7 × 7
,”
Chem. Phys. Lett.
527
,
1
6
(
2012
).
23.
T.
Zambelli
,
Y.
Boutayeb
,
F.
Gayral
,
J.
Lagoute
 et al., “
Deposition of large organic molecules in ultra-high vacuum: A comparison between thermal sublimation and pulse-injection
,”
Nanoscience
3
(
3
),
12
(
2004
).
24.
S.
Ghosal
, “
Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides
,”
Science
307
(
5709
),
563
566
(
2005
).
25.
L.
Grill
 et al., “
Preparation of self-ordered molecular layers by pulse injection
,”
Surf. Sci.
600
(
11
),
L143
L147
(
2006
).
26.
G.
Scoles
,
Atomic and Molecular Bean Methods
(
Oxford University Press
, Incorporated,
1988
), Vol.
1
.
27.
J. M.
Hollas
,
Jet Spectroscopy and Molecular Dynamics
(
Springer
,
1995
).
28.
P. J.
Yunker
 et al., “
Suppression of the coffee-ring effect by shape-dependent capillary interactions
,”
Nature
476
(
7360
),
308
311
(
2011
).
29.
R. D.
Deegan
 et al., “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
(
6653
),
827
829
(
1997
).
30.
J. F.
Moulder
 et al.,
Handbook of X-Ray Photoelectron Spectroscopy
(
Perkin Elmer Corporation
,
1992
).
31.
C.
Briones
 et al., “
Ordered self-assembled monolayers of peptide nucleic acids with DNA recognition capability
,”
Phys. Rev. Lett.
93
(
20
),
208103
(
2004
).
32.
A.
Spitzer
and
H.
Lüth
, “
The adsorption of oxygen on copper surfaces: I. Cu (100) and Cu (110)
,”
Surf. Sci.
118
(
1
),
121
135
(
1982
).
33.
A. I.
Stadnichenko
,
A. M.
Sorokin
, and
A. I.
Boronin
, “
XPS, UPS, and STM studies of nanostructured CuO films
,”
J. Struct. Chem.
49
(
2
),
341
347
(
2008
).
You do not currently have access to this content.