Polystyrene film nanocomposites of 0.3 mm thickness with embedded LaPO4-Pr nanoparticles (40 wt. %) have been synthesized. The luminescent and kinetic properties of these polystyrene composites with embedded LaPO4-Pr nanoparticles upon pulse X-ray excitation have been studied. The luminescence intensity of this polystyrene material significantly increases as it is loaded with inorganic LaPO4-Pr nanoparticles. Nanocomposite films reveal luminescence spectra typical for polystyrene activators (p-Terphenyl and POPOP) and two components of decay time kinetics of luminescence with 12 ns and 2.8 ns time constants, depending on nanoparticle sizes. The component with 12 ns decay constant arises due to the radiative transfer of the 5d-4f-emission of the Pr3+ ions in the LaPO4 nanoparticles to the polystyrene. The decay component with the time constant 2.8 ns originates from luminescence of polystyrene matrix excited by electrons emitted from nanoparticles due to the photoeffect. This nonradiative mechanism of energy transfer from nanoparticles to polystyrene matrices is determinative for nanoparticles, as their sizes are smaller than a mean free path of an electron.

1.
M.
Nikl
and
A.
Yoshikawa
,
Adv. Opt. Mater.
3
,
463
(
2015
).
2.
E. A.
McKigney
,
R. E.
Del Sesto
,
L. G.
Jacobsohn
,
P. A.
Santi
,
R. E.
Muenchausen
,
K. C.
Ott
,
T. M.
McCleskey
,
B. L.
Bennett
,
J. F.
Smith
, and
D. W.
Cooke
,
Nucl. Instrum. Methods Phys. Res., Sect. A
579
,
15
(
2007
).
3.
J. M.
Park
,
H. J.
Kim
,
Y. S.
Hwang
,
D. H.
Kim
, and
H. W.
Park
,
J. Lumin.
146
,
157
(
2014
).
4.
H.
Buresova
,
L.
Prochazkova
,
R.
Martinez Turtos
,
V.
Jary
,
E.
Mihokova
,
A.
Beitlerova
,
R.
Pjatkan
,
S.
Gundacker
,
E.
Auffray
,
P.
Lecoq
,
M.
Nikl
, and
V.
Cuba
,
Opt. Express
24
,
15289
(
2016
).
5.
B. L.
Rupert
,
N. J.
Cherepy
,
B. W.
Sturm
,
R. D.
Sanner
, and
S. A.
Payne
,
EPL
97
,
22002
(
2012
).
6.
O. U.
Sytnik
,
O. V.
Svidlo
, and
P. N.
Zhmurin
,
Funct. Mater.
20
,
243
(
2013
).
7.
Y.
Sun
,
M.
Koshimizu
,
N.
Yahaba
,
F.
Nishikido
,
S.
Kishimoto
,
R.
Haruki
, and
K.
Asai
,
Appl. Phys. Lett.
104
,
174104
(
2014
).
8.
T. M.
Demkiv
,
O. O.
Halyatkin
,
V. V.
Vistovskyy
,
A. V.
Gektin
, and
A. S.
Voloshinovskii
,
Nucl. Instrum. Methods Phys. Res., Sect. A
810
,
1
(
2016
).
9.
T. S.
Malyy
,
V. V.
Vistovskyy
,
Z. A.
Khapko
,
A. S.
Pushak
,
N. E.
Mitina
,
A. S.
Zaichenko
,
A. V.
Gektin
, and
A. S.
Voloshinovskii
,
J. Appl. Phys.
113
,
224305
(
2013
).
10.
V.
Vistovskyy
,
N.
Mitina
,
A.
Shapoval
,
T.
Malyy
,
A.
Gektin
,
T.
Konstantinova
,
A.
Voloshinovskii
, and
A.
Zaichenko
,
Opt. Mater.
34
,
2066
(
2012
).
11.
P.
Savchyn
,
I.
Karbovnyk
,
V.
Vistovskyy
,
A.
Voloshinovskii
,
V.
Pankratov
,
M.
Cestelli Guidi
,
C.
Mirri
,
O.
Myahkota
,
A.
Riabtseva
,
N.
Mitina
,
A.
Zaichenko
, and
A. I.
Popov
,
J. Appl. Phys.
112
,
124309
(
2012
).
12.
A. M.
Srivastava
,
A. A.
Setlur
,
H. A.
Comanzo
,
W. W.
Beers
,
U.
Happek
, and
P.
Schmidt
,
Opt. Mater.
33
,
292
(
2011
).
13.
T.
Shalapska
,
G.
Stryganyuk
,
A.
Gektin
,
P.
Demchenko
,
A.
Voloshinovskii
, and
P.
Dorenbos
,
J. Phys.: Condens. Matter.
22
,
485503
(
2010
).
14.
V. V.
Vistovskyy
,
A. V.
Zhyshkovych
,
N. E.
Mitina
,
A. S.
Zaichenko
,
A. V.
Gektin
,
A. N.
Vasil'ev
, and
A. S.
Voloshinovskii
,
J. Appl. Phys.
112
,
024325
(
2012
).
15.
R.
Kirkin
,
V. V.
Mikhailin
, and
A. N.
Vasil'ev
,
IEEE Trans. Nucl. Sci.
59
,
2057
(
2012
).
16.
A.
Bulin
,
A.
Vasil'ev
,
A.
Belsky
,
D.
Amans
,
G.
Ledoux
, and
C.
Dujardin
,
Nanoscale
7
,
5744
(
2015
).
17.
G.
Bizarri
,
W. W.
Moses
,
J.
Singh
,
A. N.
Vasil'ev
, and
R. T.
Williams
,
J. Appl. Phys.
105
,
044507
(
2009
).
18.
R. H.
Ritchie
,
C. J.
Tung
,
V. E.
Anderson
, and
J. C.
Ashley
,
Radiat. Res.
64
,
181
(
1975
).
19.
V.
Vistovskyy
,
Ya.
Chornodolskyy
,
A.
Gloskovskii
,
S.
Syrotyuk
,
T.
Malyi
,
M.
Chylii
,
P.
Zhmurin
,
A.
Gektin
,
A.
Vasil'ev
, and
A.
Voloshinovskii
,
Radiat. Meas.
90
,
174
(
2016
).
20.
T.
Li
,
C.
Zhou
, and
M.
Jiang
,
Polym. Bull.
25
,
211
(
1991
).
You do not currently have access to this content.