Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO3 bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO3 is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

1.
N.
Shibata
,
M. F.
Chisholm
,
A.
Nakamura
,
S. J.
Pennycook
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Science
316
,
82
(
2007
).
2.
D. L.
Medlin
,
K. J.
Erickson
,
S. J.
Limmer
,
W. G.
Yelton
, and
M. P.
Siegal
,
J. Mater. Sci.
49
,
3970
(
2014
).
3.
C. L.
Jia
,
A.
Thust
, and
K.
Urban
,
Phys. Rev. Lett.
95
,
225506
(
2005
).
4.
J. P.
Buban
,
M. F.
Chi
,
D. J.
Masiel
,
J. P.
Bradley
,
B.
Jiang
,
H.
Stahlberg
, and
N. D.
Browning
,
J. Mater. Res.
24
,
2191
(
2009
).
5.
K.
Takehara
,
Y.
Sato
,
T.
Tohei
,
N.
Shibata
, and
Y.
Ikuhara
,
J. Mater. Sci.
49
,
3962
(
2014
).
6.
A. H.
Heuer
,
C. L.
Jia
, and
K. P. D.
Lagerlof
,
Science
330
,
1227
(
2010
).
7.
C.
Elbaum
,
Phys. Rev. Lett.
32
,
376
(
1974
).
8.
D.
Dimos
,
P.
Chaudhari
, and
J.
Mannhart
,
Phys. Rev. B
41
,
4038
(
1990
).
9.
R.
De Souza
,
J.
Fleig
,
J.
Maier
,
Z. L.
Zhang
,
W.
Sigle
, and
M.
Ruhle
,
J. Appl. Phys.
97
,
053502
(
2005
).
10.
S. Y.
Choi
,
S. D.
Kim
,
M.
Choi
,
H. S.
Lee
,
J.
Ryu
,
N.
Shibata
,
T.
Mizoguchi
,
E.
Tochigi
,
T.
Yamamoto
,
S. J. L.
Kang
, and
Y.
Ikuhara
,
Nano Lett.
15
,
4129
(
2015
).
11.
I.
Yonenaga
,
Y.
Ohno
,
T.
Yao
, and
K.
Edagawa
,
J. Cryst. Growth
403
,
72
(
2014
).
12.
I.
Sugiyama
,
N.
Shibata
,
Z. C.
Wang
,
S.
Kobayashi
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Nat. Nanotechnol.
8
,
266
(
2013
).
13.
A.
Nakamura
,
K.
Matsunaga
,
J.
Tohma
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Nat. Mater.
2
,
453
(
2003
).
14.
Y.
Tokumoto
,
S.
Amma
,
N.
Shibata
,
T.
Mizoguchi
,
K.
Edagawa
,
T.
Yamamoto
, and
Y.
Ikuhara
,
J. Appl. Phys.
106
,
124307
(
2009
).
15.
Y.
Ikuhara
,
Prog. Mater. Sci.
54
,
770
(
2009
).
16.
A.
Nakamura
,
T.
Mizoguchi
,
K.
Matsunaga
,
T.
Yamamoto
,
N.
Shibata
, and
Y.
Ikuhara
,
ACS Nano
7
,
6297
(
2013
).
17.
V.
Metlenko
,
A.
Ramadan
,
F.
Gunkel
,
H.
Du
,
H.
Schraknepper
,
S.
Hoffmann-Eifert
,
R.
Dittmann
,
R.
Waser
, and
R.
De Souza
,
Nanoscale
6
,
12864
(
2014
).
18.
Y.
Ikuhara
,
H.
Nishimura
,
A.
Nakamura
,
K.
Matsunaga
,
T.
Yamamoto
, and
K. P. D.
Lagerlof
,
J. Am. Ceram. Soc.
86
,
595
(
2003
).
19.
A.
Nakamura
,
K.
Matsunaga
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Philos. Mag.
86
,
4657
(
2006
).
20.
E.
Tochigi
,
N.
Shibata
,
A.
Nakamura
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Acta Mater.
56
,
2015
(
2008
).
21.
A.
Nakamura
,
E.
Tochigi
,
N.
Shibata
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Mater. Trans.
50
,
1008
(
2009
).
22.
E.
Tochigi
,
N.
Shibata
,
A.
Nakamura
,
T.
Mizoguchi
,
T.
Yamamoto
, and
Y.
Ikuhara
,
Acta Mater.
58
,
208
(
2010
).
23.
E.
Tochigi
,
N.
Shibata
,
A.
Nakamura
,
T.
Yamamoto
, and
Y.
Ikuhara
,
J. Mater. Sci.
46
,
4428
(
2011
).
24.
E.
Tochigi
,
A.
Nakamura
,
T.
Mizoguchi
,
N.
Shibata
, and
Y.
Ikuhara
,
Acta Mater.
91
,
152
(
2015
).
25.
A.
Nakamura
,
E.
Tochigi
,
J.
Nakamura
,
I.
Kishida
, and
Y.
Yokogawa
,
J. Mater. Sci.
47
,
5086
(
2012
).
26.
27.
S. C.
Abrahams
,
J. M.
Reddy
, and
J. L.
Bernstein
,
J. Phys. Chem. Solids
27
,
997
(
1966
).
28.
R. S.
Weis
and
T. K.
Gaylord
,
Appl. Phys. A
37
,
191
(
1985
).
29.
P.
Nagels
, “
Experimental Hall effect data for a small-polaron semiconductor
,” in
The Hall Effect and Its Applications
, edited by
C. L.
Chien
and
C. R.
Westlake
(
Plenum Press
,
New York
,
1980
), pp.
253
280
.
30.
A.
Dhar
,
N.
Singh
,
R. K.
Singh
, and
R.
Singh
,
J. Phys. Chem. Solids
74
,
146
(
2013
).
31.
A. A.
Ballman
,
J. Am. Ceram. Soc.
48
,
112
(
1965
).
32.
J. R.
Carruthers
,
G. E.
Peterson
,
M.
Grasso
, and
P. M.
Bridenbaugh
,
J. Appl. Phys.
42
,
1846
(
1971
).
33.
T.
Volk
and
M.
Wohlecke
,
Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching
(
Springer-Verlag
, Berlin,
Heidelberg
,
2008
).
34.
Y.
Ohno
,
T.
Taishi
,
N.
Bamba
, and
I.
Yonenaga
,
J. Cryst. Growth
393
,
171
(
2014
).
35.
M.
Peach
and
J. S.
Koehler
,
Phys. Rev.
80
,
436
(
1950
).
36.
K.
Ishizuka
and
N.
Uyeda
,
Acta Crystallogr., Sect. A
33
,
740
(
1977
).
37.
M. A.
Mccoy
,
S. A.
Dregia
, and
W. E.
Lee
,
J. Mater. Res.
9
,
2029
(
1994
).
38.
H.
Akazawa
and
M.
Shimada
,
J. Mater. Res.
22
,
1726
(
2007
).
39.
R. W.
Balluffi
,
Phys. Status Solidi
42
,
11
(
1970
).
40.
T. E.
Volin
,
K. H.
Lie
, and
R. W.
Balluffi
,
Acta Metall.
19
,
263
(
1971
).
41.
K.
Otsuka
,
A.
Kuwabara
,
A.
Nakamura
,
T.
Yamamoto
,
K.
Matsunaga
, and
Y.
Ikuhara
,
Appl. Phys. Lett.
82
,
877
(
2003
).
42.
P. P.
Sahoo
and
P. A.
Maggard
,
Inorg. Chem.
52
,
4443
(
2013
).
43.
M.
Lundberd
,
Acta Chem. Scand.
25
,
3337
(
1971
).
You do not currently have access to this content.