We provide a full set of growth rate coefficients to enable high-accuracy two- and three-dimensional simulations of dry thermal oxidation of 4H-silicon carbide. The available models are insufficient for the simulation of complex multi-dimensional structures, as they are unable to predict oxidation for arbitrary crystal directions because of the insufficient growth rate coefficients. By investigating time-dependent dry thermal oxidation kinetics, we obtain temperature-dependent growth rate coefficients for surfaces with different crystal orientations. We fit experimental data using an empirical relation to obtain the oxidation growth rate parameters. Time-dependent oxide thicknesses at various temperatures are taken from published experimental findings. We discuss the oxidation rate parameters in terms of surface orientation and oxidation temperature. Additionally, we fit the obtained temperature-dependent growth rate coefficients using the Arrhenius equation to obtain activation energies and pre-exponential factors for the four crystal orientations. The thereby obtained parameters are essential for enabling high-accuracy simulations of dry thermal oxidation and can be directly used to augment multi-dimensional process simulations.

1.
G. L.
Harris
,
Properties of Silicon Carbide
(
INSPEC
,
United Kingdom
,
1995
).
2.
C.
Harris
and
V.
Afanas'ev
, “
SiO2 as an insulator for SiC devices
,”
Microelectron. Eng.
36
,
167
174
(
1997
).
3.
D.
Goto
,
Y.
Hijikata
,
S.
Yagi
, and
H.
Yaguchi
, “
Differences in SiC thermal oxidation process between crystalline surface orientations observed by in-situ spectroscopic ellipsometry
,”
J. Appl. Phys.
117
,
095306
(
2015
).
4.
Y.
Hijikata
,
H.
Yaguchi
,
S.
Yoshida
,
Y.
Takata
,
K.
Kobayashi
,
H.
Nohira
, and
T.
Hattori
, “
Characterization of oxide films on 4H-SiC epitaxial (0001) faces by high-energy-resolution photoemission spectroscopy: Comparison between wet and dry oxidation
,”
J. Appl. Phys.
100
,
053710
(
2006
).
5.
T.
Yamamoto
,
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
Oxide growth rate enhancement of silicon carbide (0001) Si-faces in thin oxide regime
,”
Jpn. J. Appl. Phys., Part 1
47
,
7803
(
2008
).
6.
T.
Yamamoto
,
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
Growth rate enhancement of (0001)-face silicon–carbide oxidation in thin oxide regime
,”
Jpn. J. Appl. Phys., Part 2
46
,
L770
(
2007
).
7.
Y.
Song
,
S.
Dhar
,
L. C.
Feldman
,
G.
Chung
, and
J. R.
Williams
, “
Modified deal grove model for the thermal oxidation of silicon carbide
,”
J. Appl. Phys.
95
,
4953
4957
(
2004
).
8.
I.
Vickridge
,
J.
Ganem
,
Y.
Hoshino
, and
I.
Trimaille
, “
Growth of SiO2 on SiC by dry thermal oxidation: Mechanisms
,”
J. Phys. D: Appl. Phys.
40
,
6254
(
2007
).
9.
H.
Yano
,
F.
Katafuchi
,
T.
Kimoto
, and
H.
Matsunam
, “
Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET's
,”
IEEE Trans. Electron. Devices
46
,
504
510
(
1999
).
10.
K.
Kamimura
,
D.
Kobayashi
,
S.
Okada
,
T.
Mizuguchi
,
E.
Ryu
,
R.
Hayashibe
,
F.
Nagaune
, and
Y.
Onuma
, “
Preparation and characterization of SiO2/6H–SiC metal–insulator–semiconductor structure using TEOS as source material
,”
Appl. Surf. Sci.
184
,
346
349
(
2001
).
11.
P.
Lai
,
J.
Xu
,
H.
Wu
, and
C.
Chan
, “
Interfacial properties and reliability of SiO2 grown on 6H-SiC in dry O2 Plus trichloroethylene
,”
Microelectron. Reliab.
44
,
577
580
(
2004
).
12.
D. A.
Newsome
,
D.
Sengupta
,
H.
Foroutan
,
M. F.
Russo
, and
A. C.
van Duin
, “
Oxidation of silicon carbide by O2 and H2O: A ReaxFF reactive molecular dynamics study, Part I
,”
J. Phys. Chem. C
116
,
16111
16121
(
2012
).
13.
Y.
Hijikata
,
Physics and Technology of Silicon Carbide Devices
(
InTech
,
Croatia
,
2013
).
14.
S. K.
Gupta
and
J.
Akhtar
,
Thermal Oxidation of Silicon Carbide (SiC)-Experimentally Observed Facts
(
INTECH
,
China
,
2011
).
15.
M.
Schürmann
,
S.
Dreiner
,
U.
Berges
, and
C.
Westphal
, “
Structure of the interface between ultrathin SiO2 films and 4H-SiC (0001)
,”
Phys. Rev. B
74
,
035309
(
2006
).
16.
P.
Fiorenza
and
V.
Raineri
, “
Reliability of thermally oxidized SiO2/4H-SiC by conductive atomic force microscopy
,”
Appl. Phys. Lett.
88
,
212112
(
2006
).
17.
T.
Yamamoto
,
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
Oxygen-partial-pressure dependence of SiC oxidation rate studied by in situ spectroscopic ellipsometry
,” in
Proceedings of Materials Science Forum
(
2009)
, pp.
667
670
.
18.
J. J.
Ahn
,
Y. D.
Jo
,
S. C.
Kim
,
J. H.
Lee
, and
S. M.
Koo
, “
Crystallographic plane-orientation dependent atomic force microscopy-based local oxidation of silicon carbide
,”
Nanoscale Res. Lett.
6
,
1
5
(
2011
).
19.
N.
Tokura
,
K.
Hara
,
T.
Miyajima
,
H.
Fuma
, and
K.
Hara
, “
Current-voltage and capacitance-voltage characteristics of metal/oxide/6H-silicon carbide structure
,”
Jpn. J. Appl. Phys., Part 1
34
,
5567
(
1995
).
20.
B. E.
Deal
and
A.
Grove
, “
General relationship for the thermal oxidation of silicon
,”
J. Appl. Phys.
36
,
3770
3778
(
1965
).
21.
H. Z.
Massoud
,
J. D.
Plummer
, and
E. A.
Irene
, “
Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime I. Experimental results
,”
J. Electrochem. Soc.
132
,
2685
2693
(
1985
).
22.
H. Z.
Massoud
,
J. D.
Plummer
, and
E. A.
Irene
, “
Thermal oxidation of silicon in dry oxygen: Growth-rate enhancement in the thin regime II. Physical mechanisms
,”
J. Electrochem. Soc.
132
,
2693
2700
(
1985
).
23.
H. Z.
Massoud
,
J. D.
Plummer
, and
E. A.
Irene
, “
Thermal oxidation of silicon in dry oxygen accurate determination of the kinetic rate constants
,”
J. Electrochem. Soc.
132
,
1745
1753
(
1985
).
24.
H.
Kageshima
,
K.
Shiraishi
, and
M.
Uematsu
, “
Universal theory of Si oxidation rate and importance of interfacial Si emission
,”
Jpn. J. Appl. Phys., Part 2
38
,
L971
(
1999
).
25.
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
A kinetic model of silicon carbide oxidation based on the interfacial silicon and carbon emission phenomenon
,”
Appl. Phys. Express
2
,
021203
(
2009
).
26.
T.
Hosoi
,
D.
Nagai
,
T.
Shimura
, and
H.
Watanabe
, “
Exact evaluation of interface-reaction-limited growth in dry and wet thermal oxidation of 4H-SiC (0001) Si-face surfaces
,”
Jpn. J. Appl. Phys., Part 1
54
,
098002
(
2015
).
27.
K.
Kakubari
,
R.
Kuboki
,
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
Real time observation of SiC oxidation using an in situ ellipsometer
,” in
Proceedings of Materials Science Forum
(
2006)
, pp.
1031
1034
.
28.
J.
Shenoy
,
M.
Das
,
J.
Cooper
, Jr.
,
M.
Melloch
, and
J.
Palmour
, “
Effect of substrate orientation and crystal anisotropy on the thermally oxidized SiO2/SiC Interface
,”
J. Appl. Phys.
79
,
3042
3045
(
1996
).
29.
V.
Šimonka
,
G.
Nawratil
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Anisotropic interpolation method of silicon carbide oxidation growth rates for three-dimensional simulation
,”
Solid-State Electron.
(unpublished).
30.
V.
Šimonka
,
G.
Nawratil
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Direction dependent three-dimensional silicon carbide oxidation growth rate calculations
,” in
Proceedings of 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon
(
2016)
, pp.
226
229
.
31.
A. S.
Grove
,
Physics and Technology of Semiconductor Devices
(
Wiley
,
United Kingdom
,
1967
).
33.
D.
Potter
,
Computational Physics
(
Wiley
,
United Kingdom
,
1973
).
34.
J.
Thijssen
,
Computational Physics
(
Cambridge University Press
,
United Kingdom
,
2007
).
35.
R.
Macey
,
G.
Oster
, and
T.
Zahley
,
Berkeley Madonna Users Guide
(
University of California
,
Berkely, CA
,
2009
).
36.
S.
Arrhenius
,
Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
(
Wilhelm Engelmann
,
Germany
,
1889
).
37.
H.
Kageshima
,
M.
Uematsu
, and
K.
Shiraishi
, “
Theory of thermal si oxide growth rate taking into account interfacial si emission effects
,”
Microelectron. Eng.
59
,
301
309
(
2001
).
38.
K.
Christiansen
and
R.
Helbig
, “
Anisotropic oxidation of 6H-SiC
,”
J. Appl. Phys.
79
,
3276
3281
(
1996
).
39.
S.
Dhar
,
Y.
Song
,
L.
Feldman
,
T.
Isaacs-Smith
,
C.
Tin
,
J.
Williams
,
G.
Chung
,
T.
Nishimura
,
D.
Starodub
,
T.
Gustafsson
 et al., “
Effect of nitric oxide annealing on the interface trap density near the conduction bandedge of 4H-SiC at the oxide/(1120) 4H-SiC interface
,”
Appl. Phys. Lett.
84
,
1498
1500
(
2004
).
40.
E. A.
Irene
,
H. Z.
Massoud
, and
E.
Tierney
, “
Silicon oxidation studies: Silicon orientation effects on thermal oxidation
,”
J. Electrochem. Soc.
133
,
1253
1256
(
1986
).
41.
M.
Uematsu
,
H.
Kageshima
, and
K.
Shiraishi
, “
Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation
,”
J. Appl. Phys.
89
,
1948
1953
(
2001
).
42.
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
Model calculations of SiC oxide growth rate at various oxidation temperatures based on the silicon and carbon emission model
,” in
Proceedings of Materials Science Forum
(
2010
), pp.
809
812
.
43.
Y.
Hijikata
,
H.
Yaguchi
, and
S.
Yoshida
, “
Theoretical studies for si and c emission into SiC layer during oxidation
,” in
Proceedings of Materials Science Forum
(
2011
), pp.
429
432
.
44.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Three-dimensional growth rate modeling and simulation of silicon carbide thermal oxidation
,” in
Proceedings of 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
(
2016
), pp.
233
237
.
You do not currently have access to this content.