Over the past few years, there has been a growing interest in layered transition metal dichalcogenides such as molybdenum disulfide (MoS2). Most studies so far have focused on the electronic and optoelectronic properties of single-layer MoS2, whose band structure features a direct bandgap, in sharp contrast to the indirect bandgap of thicker MoS2. In this paper, we present a systematic study of the thickness-dependent electrical and thermoelectric properties of few-layer MoS2. We observe that the electrical conductivity (σ) increases as we reduce the thickness of MoS2 and peaks at about two layers, with six-times larger conductivity than our thickest sample (23-layer MoS2). Using a back-gate voltage, we modulate the Fermi energy (EF) of the sample where an increase in the Seebeck coefficient (S) is observed with decreasing gate voltage (EF) towards the subthreshold (OFF state) of the device, reaching as large as 500μV/K in a four-layer MoS2. While previous reports have focused on a single-layer MoS2 and measured Seebeck coefficient in the OFF state, which has vanishing electrical conductivity and thermoelectric power factor (PF=S2σ), we show that MoS2-based devices in their ON state can have PF as large as >50μWcmK2 in the two-layer sample. The PF increases with decreasing thickness and then drops abruptly from double-layer to single-layer MoS2, a feature we suggest as due to a change in the energy dependence of the electron mean-free-path according to our theoretical calculation. Moreover, we show that care must be taken in thermoelectric measurements in the OFF state to avoid obtaining erroneously large Seebeck coefficients when the channel resistance is very high. Our study paves the way towards a more comprehensive examination of the thermoelectric performance of two-dimensional (2D) semiconductors.

1.
T.
Thonhauser
,
Solid State Commun.
129
,
249
(
2004
).
2.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
3.
J. N.
Coleman
,
M.
Lotya
,
A.
O'Neill
,
S. D.
Bergin
,
P. J.
King
,
U.
Khan
,
K.
Young
,
A.
Gaucher
,
S.
De
,
R. J.
Smith
,
I. V.
Shvets
,
S. K.
Arora
,
G.
Stanton
,
H.-Y.
Kim
,
K.
Lee
,
G. T.
Kim
,
G. S.
Duesberg
,
T.
Hallam
,
J. J.
Boland
,
J. J.
Wang
,
J. F.
Donegan
,
J. C.
Grunlan
,
G.
Moriarty
,
A.
Shmeliov
,
R. J.
Nicholls
,
J. M.
Perkins
,
E. M.
Grieveson
,
K.
Theuwissen
,
D. W.
McComb
,
P. D.
Nellist
, and
V.
Nicolosi
,
Science
331
,
568
(
2011
).
4.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
5.
S. Z.
Butler
,
S. M.
Hollen
,
L.
Cao
,
Y.
Cui
,
J. A.
Gupta
,
H. R.
Gutierrez
,
T. F.
Heinz
,
S. S.
Hong
,
J.
Huang
,
A. F.
Ismach
,
E.
Johnston-Halperin
,
M.
Kuno
,
V. V.
Plashnitsa
,
R. D.
Robinson
,
R. S.
Ruoff
,
S.
Salahuddin
,
J.
Shan
,
L.
Shi
,
M. G.
Spencer
,
M.
Terrones
,
W.
Windl
, and
J. E.
Goldberger
,
ACS Nano
7
,
2898
(
2013
).
6.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
7.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
8.
S.
Bertolazzi
,
J.
Brivio
, and
A.
Kis
,
ACS Nano
5
,
9703
(
2011
).
9.
A.
Ayari
,
E.
Cobas
,
O.
Ogundadegbe
, and
M. S.
Fuhrer
,
J. Appl. Phys.
101
,
014507
(
2007
).
10.
W.
Jin
,
P.-C.
Yeh
,
N.
Zaki
,
D.
Zhang
,
J. T.
Sadowski
,
A.
Al-Mahboob
,
A. M.
van der Zande
,
D. A.
Chenet
,
J. I.
Dadap
,
I. P.
Herman
,
P.
Sutter
,
J.
Hone
, and
R. M.
Osgood
,
Phys. Rev. Lett.
111
,
106801
(
2013
).
11.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
(
2010
).
12.
G.
Eda
,
H.
Yamaguchi
,
D.
Voiry
,
T.
Fujita
,
M.
Chen
, and
M.
Chhowalla
,
Nano Lett.
11
,
5111
(
2011
).
13.
B.
Radisavljevic
,
M. B.
Whitwick
, and
A.
Kis
,
ACS Nano
5
,
9934
(
2011
).
14.
H.
Fang
,
S.
Chuang
,
T. C.
Chang
,
K.
Takei
,
T.
Takahashi
, and
A.
Javey
,
Nano Lett.
12
,
3788
(
2012
).
15.
B.
Radisavljevic
and
A.
Kis
,
Nat. Mater.
12
,
815
(
2013
).
16.
K.
Roy
,
M.
Padmanabhan
,
S.
Goswami
,
T. P.
Sai
,
G.
Ramalingam
,
S.
Raghavan
, and
A.
Ghosh
,
Nat. Nanotechnol.
8
,
826
(
2013
).
17.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
,
Nat. Nanotechnol.
8
,
497
(
2013
).
18.
R.
Ganatra
and
Q.
Zhang
,
ACS Nano
8
,
4074
(
2014
).
19.
X.
Xu
,
W.
Yao
,
D.
Xiao
, and
T. F.
Heinz
,
Nat. Phys.
10
,
343
(
2014
).
20.
Y.
Zuev
,
W.
Chang
, and
P.
Kim
,
Phys. Rev. Lett.
102
,
096807
(
2009
).
21.
M.
Cutler
and
N. F.
Mott
,
Phys. Rev.
181
,
1336
(
1969
).
22.
D.
Kim
,
P.
Syers
,
N. P.
Butch
,
J.
Paglione
, and
M. S.
Fuhrer
,
Nano Lett.
14
,
1701
(
2014
).
23.
J.
Small
,
K.
Perez
, and
P.
Kim
,
Phys. Rev. Lett.
91
,
256801
(
2003
).
24.
M. S.
Dresselhaus
,
G.
Chen
,
M. Y.
Tang
,
R.
Yang
,
H.
Lee
,
D.
Wang
,
Z.
Ren
,
J. P.
Fleurial
, and
P.
Gogna
,
Adv. Mater.
19
,
1043
(
2007
).
25.
R.
Kim
,
S.
Datta
, and
M. S.
Lundstrom
,
J. Appl. Phys.
105
,
034506
(
2009
).
26.
J.
Maassen
and
M.
Lundstrom
,
Appl. Phys. Lett.
102
,
093103
(
2013
).
27.
J.
Wu
,
H.
Schmidt
,
K. K.
Amara
,
X.
Xu
,
G.
Eda
, and
B.
Ozyilmaz
,
Nano Lett.
14
,
2730
(
2014
).
28.
M.
Buscema
,
M.
Barkelid
,
V.
Zwiller
,
H. S. J.
van der Zant
,
G. A.
Steele
, and
A.
Castellanos-Gomez
,
Nano Lett.
13
,
358
(
2013
).
29.
W.
Huang
,
X.
Luo
,
C. K.
Gan
,
S. Y.
Quek
, and
G.
Liang
,
Phys. Chem. Chem. Phys.
16
,
10866
(
2014
).
30.
D.
Wickramaratne
,
F.
Zahid
, and
R. K.
Lake
,
J. Chem. Phys.
140
,
124710
(
2014
).
31.
S.
Das
,
H.-Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
(
2013
).
32.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
,
ACS Nano
4
,
2695
(
2010
).
33.
R.
Fletcher
,
V. M.
Pudalov
,
A. D. B.
Radcliffe
, and
C.
Possanzini
,
Semicond. Sci. Technol.
16
,
386
(
2001
).
34.
B.
Baugher
,
H.
Churchill
,
Y.
Yang
, and
P.
Jarillo-Herrero
,
Nano Lett.
13
,
4212
(
2013
).
35.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
36.
C.
Wood
,
Rep. Prog. Phys.
51
,
459
539
(
1988
).
37.
I.
Jo
,
M. T.
Pettes
,
E.
Ou
,
W.
Wu
, and
L.
Shi
,
Appl. Phys. Lett.
104
,
201902
(
2014
).
38.
R.
Yan
,
J. R.
Simpson
,
S.
Bertolazzi
,
J.
Brivio
,
M.
Watson
,
X.
Wu
,
A.
Kis
,
T.
Luo
,
A. R. H.
Walker
, and
H. G.
Xing
,
ACS Nano
8
,
986
(
2014
).
39.
S.
Sahoo
,
A. P. S.
Gaur
,
M.
Ahmadi
,
M. J.-F.
Guinel
, and
R. S.
Katiyar
,
J. Phys. Chem. C
117
,
9042
(
2013
).
40.
J.
Maassen
and
M. S.
Lundstrom
, in
Proceedings of the 14th IEEE International Conference on Nanotechnology
(
2014
), p.
904
.
41.
M. T.
Pettes
,
J.
Maassen
,
I.
Jo
,
M. S.
Lundstrom
, and
L.
Shi
,
Nano Lett.
13
,
5316
(
2013
).
42.
C.
Jeong
,
R.
Kim
,
M.
Luisier
,
S.
Datta
, and
M.
Lundstrom
,
J. Appl. Phys.
107
,
023707
(
2010
).
43.
J.
Maassen
,
C.
Jeong
,
A.
Baraskar
,
M.
Rodwell
, and
M.
Lundstrom
,
Appl. Phys. Lett.
102
,
111605
(
2013
).
44.
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer Series in Materials Science
,
2001
).
45.
46.
G.
Kresse
and
J.
Furthmiiller
,
J. Comput. Mater. Sci.
6
,
15
(
1996
).
47.
K.
Condrad
,
J.
Maassen
, and
M. S.
Lundstrom
,
LanTraP
(
nanoHub Purdue University
,
2014
).
48.
C.
Jeong
,
S.
Datta
, and
M.
Lundstrom
,
J. Appl. Phys.
109
,
073718
(
2011
).
49.
L.
Yang
,
X.
Cui
,
J.
Zhang
,
K.
Wang
,
M.
Shen
,
S.
Zeng
,
S. A.
Dayeh
,
L.
Feng
, and
B.
Xiang
,
Sci. Rep.
4
,
5649
(
2014
).
50.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
,
ACS Nano
5
,
7707
(
2011
).
51.
H.
Qiu
,
T.
Xu
,
Z.
Wang
,
W.
Ren
,
H.
Nan
,
Z.
Ni
,
Q.
Chen
,
S.
Yuan
,
F.
Miao
,
F.
Song
,
G.
Long
,
Y.
Shi
,
L.
Sun
,
J.
Wang
, and
X.
Wang
,
Nat. Commun.
4
,
2642
(
2013
).
52.
J. H.
Seol
,
A. L.
Moore
,
S. K.
Saha
,
F.
Zhou
,
L.
Shi
,
Q. L.
Ye
,
R.
Scheffler
,
N.
Mingo
, and
T.
Yamada
,
J. Appl. Phys.
101
,
023706
(
2007
).
You do not currently have access to this content.