A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications. Initially, Atomic Force Microscopy and Scanning Electron Microscopy studies were carried out over a period of 27 days on mechanically exfoliated flakes of 5 different TMDs, namely, MoS2, MoSe2, MoTe2, HfS2, and HfSe2. The most reactive were MoTe2 and HfSe2. HfSe2, in particular, showed surface protrusions after ambient exposure, reaching a height and width of approximately 60 nm after a single day. This study was later supplemented by Transmission Electron Microscopy (TEM) cross-sectional analysis, which showed hemispherical-shaped surface blisters that are amorphous in nature, approximately 180–240 nm tall and 420–540 nm wide, after 5 months of air exposure, as well as surface deformation in regions between these structures, related to surface oxidation. An X-ray photoelectron spectroscopy study of atmosphere exposed HfSe2 was conducted over various time scales, which indicated that the Hf undergoes a preferential reaction with oxygen as compared to the Se. Energy-Dispersive X-Ray Spectroscopy showed that the blisters are Se-rich; thus, it is theorised that HfO2 forms when the HfSe2 reacts in ambient, which in turn causes the Se atoms to be aggregated at the surface in the form of blisters. Overall, it is evident that air contact drastically affects the structural properties of TMD materials. This issue poses one of the biggest challenges for future TMD-based devices and technologies.

1.
H.
Qiu
,
L.
Pan
,
Z.
Yao
,
J.
Li
,
Y.
Shi
, and
X.
Wang
,
Appl. Phys. Lett.
100
,
123104
(
2012
).
2.
R.
Addou
,
S.
McDonnell
,
D.
Barrera
,
Z.
Guo
,
A.
Azcatl
,
J.
Wang
,
H.
Zhu
,
C. L.
Hinkle
,
M.
Quevedo-Lopez
,
H. N.
Alshareef
,
L.
Colombo
,
J. W. P.
Hsu
, and
R. M.
Wallace
,
ACS Nano
9
,
9124
(
2015
).
3.
J. H.
Kim
,
J.
Lee
,
J. H.
Kim
,
C. C.
Hwang
,
C.
Lee
, and
J. Y.
Park
,
Appl. Phys. Lett.
106
,
251606
(
2015
).
4.
R.
Duffy
,
P.
Foley
,
B.
Filippone
,
G.
Mirabelli
,
D.
O'Connell
,
B.
Sheehan
,
P.
Carolan
,
M.
Schmidt
,
K.
Cherkaoui
,
R.
Gatensby
,
T.
Hallam
,
G.
Duesberg
,
F.
Crupi
,
R.
Nagle
, and
P. K.
Hurley
,
ECS J. Solid State Sci. Technol.
5
,
Q3016
(
2016
).
5.
W.
Park
,
J.
Park
,
J.
Jang
,
H.
Lee
,
H.
Jeong
,
K.
Cho
,
S.
Hong
, and
T.
Lee
,
Nanotechnology
24
,
095202
(
2013
).
6.
Q.
Yue
,
Z. Z.
Shao
,
S. L.
Chang
, and
J. B.
Li
,
Nanoscale Res. Lett.
8
,
425
(
2013
).
7.
S. Y.
Lee
,
U. J.
Kim
,
J.
Chung
,
H.
Nam
,
H. Y.
Jeong
,
G. H.
Han
,
H.
Kim
,
H. M.
Oh
,
H.
Lee
,
H.
Kim
,
Y.
Roh
,
J.
Kim
,
S. W.
Hwang
,
Y.
Park
, and
Y. H.
Lee
,
ACS Nano
10
,
6100
(
2016
).
8.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
9.
J.
Kim
and
K.
Yong
,
J. Vac. Sci. Technol. B
24
,
1147
(
2006
).
10.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Perkin-Elmer Corporation
,
Minnesota
,
1992
).
11.
Y.
Liu
,
L.
Si
,
X.
Zhou
,
X.
Liu
,
Y.
Xu
,
J.
Bao
, and
Z.
Dai
,
J. Mater. Chem. A
2
,
17735
(
2014
).
12.
J.
Zhu
,
Y. R.
Li
, and
Z. G.
Liu
,
J. Phys. D: Appl. Phys.
37
,
2896
2900
(
2004
).
13.
M.
Kang
,
S.
Rathi
,
I.
Lee
,
D.
Lim
,
J.
Wang
,
L.
Li
,
M. A.
Khan
, and
G.-H.
Kim
,
Appl. Phys. Lett.
106
,
143108
(
2015
).
14.
R.
Yue
,
A. T.
Barton
,
H.
Zhu
,
A.
Azcatl
,
L. F.
Pena
,
J.
Wang
,
X.
Peng
,
N.
Lu
,
L.
Cheng
,
R.
Addou
,
S.
McDonnell
,
L.
Colombo
,
J. W. P.
Hsu
,
J.
Kim
,
M. J.
Kim
,
R. M.
Wallace
, and
C. L.
Hinkle
,
ACS Nano
9
,
474
(
2015
).
15.
J.
Gao
,
B.
Li
,
J.
Tan
,
P.
Chow
,
T.-M.
Lu
, and
N.
Koratkar
,
ACS Nano
10
,
2628
(
2016
).
16.
Z.
He
,
X.
Wang
,
W.
Xu
,
Y.
Zhou
,
Y.
Sheng
,
Y.
Rong
,
J. M.
Smith
, and
J. H.
Warner
,
ACS Nano
10
,
5847
(
2016
).
17.
J. D.
Wood
,
S. A.
Wells
,
D.
Jariwala
,
K.-S.
Chen
,
E.
Cho
,
V. K.
Sangwan
,
X.
Liu
,
L. J.
Lauhon
,
T. J.
Marks
, and
M. C.
Hersam
,
Nano Lett.
14
,
6964
(
2014
).
18.
A.
Castellanos-Gomez
,
L.
Vicarelli
,
E.
Prada
,
J. O.
Island
,
K. L.
Narasimha-Acharya
,
S. I.
Blanter
,
D. J.
Groenendijk
,
M.
Buscema
, and
G. A.
Steele
,
2D Mater.
1
,
025001
(
2014
).
19.
S. P.
Koenig
,
R. A.
Doganov
,
H.
Schmidt
,
A. H.
Castro Neto
, and
B.
Özyilmaz
,
Appl. Phys. Lett.
104
,
103106
(
2014
).
20.
J.-S.
Kim
,
Y.
Liu
,
W.
Zhu
,
S.
Kim
,
D.
Wu
,
L.
Tao
,
A.
Dodabalapur
,
K.
Lai
, and
D.
Akinwande
,
Sci. Rep.
5
,
8989
(
2015
).
21.
H.
Liu
,
N.
Han
, and
J.
Zhao
,
RSC Adv.
5
,
17572
(
2015
).
22.
H.
Qiu
,
T.
Xu
,
Z.
Wang
,
W.
Ren
,
H.
Nan
,
Z.
Ni
,
Q.
Chen
,
S.
Yuan
,
F.
Miao
,
F.
Song
,
G.
Long
,
Y.
Shi
,
L.
Sun
,
J.
Wang
, and
X.
Wang
,
Nat. Commun.
4
,
2642
(
2013
).
23.
J.
Hong
,
Z.
Hu
,
M.
Probert
,
K.
Li
,
D.
Lv
,
X.
Yang
,
L.
Gu
,
N.
Mao
,
Q.
Feng
,
L.
Xie
,
J.
Zhang
,
D.
Wu
,
Z.
Zhang
,
C.
Jin
,
W.
Ji
,
X.
Zhang
,
J.
Yuan
, and
Z.
Zhang
,
Nat. Commun.
6
,
6293
(
2015
).
24.
K. C.
Santosh
,
R. C.
Longo
,
R. M.
Wallace
, and
K. J.
Cho
,
Appl. Phys.
117
,
135301
(
2015
).
25.
R.
Addou
,
L.
Colombo
, and
R. M.
Wallace
,
ACS Appl. Mater. Interfaces
7
,
11921
(
2015
).
26.
Y.
Li
,
Z.
Zhou
,
S.
Zhang
, and
Z.
Chen
,
J. Am. Chem. Soc.
130
,
16739
(
2008
).
27.
G.
Lee
,
X.
Cui
,
D.
Kim
,
G.
Arefe
,
X.
Zhang
,
C.
Lee
,
F.
Ye
,
W.
Kenji
,
T.
Taniguchi
,
P.
Kim
, and
J.
Hone
,
ACS Nano
9
,
7019
(
2015
).
28.
B.
Long
,
M.
Manning
,
M.
Burke
,
B. N.
Szafranek
,
G.
Visimberga
,
D.
Thompson
,
J. C.
Greer
,
I. M.
Povey
,
J.
MacHale
,
G.
Lejosne
,
D.
Neumaier
, and
A. J.
Quinn
,
Adv. Funct. Mater.
22
,
717
(
2012
).
29.
J.
O'Connell
,
G.
Collins
,
G. P.
McGlacken
,
R.
Duffy
, and
J. D.
Holmes
,
ACS Mater. Interfaces
8
,
4101
(
2016
).
You do not currently have access to this content.