We are studying the influence of spherical silver nanoparticles (AgNP) in absorbing media by numerically solving the Maxwell's equations. Our simulations show that the near-field absorption enhancement introduced by a single AgNP in the surrounding medium is increasing with the growing particle diameter. However, we observe that the relative absorption per particle volume is on a similar level for different particle sizes; hence, different numbers of particles with the same total volume yield the same near-field absorption enhancement. We also investigate the effect of non-absorbing shells around the AgNP with the conclusion that even very thin shells suppress the beneficial effects of the particles noticeably. Additionally, we include AgNP in an organic solar cell at different vertical positions with different particle spacings and observe the beneficial effects for small AgNP and the scattering dependent performance for larger particles.

1.
M. A.
Green
and
K.
Emery
, “
Solar cell efficiency tables (version 47)
,”
Prog. Photovoltaics: Res. Appl.
24
(
1
),
3
11
(
2016
).
2.
Q.
Gan
,
F. J.
Bartoli
, and
Z. H.
Kafafi
, “
Organic photovoltaics: Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier
,”
Adv. Mater.
25
(
17
),
2377
2377
(
2013
).
3.
S.-S.
Kim
,
S.-I.
Na
,
J.
Jo
,
D.-Y.
Kim
, and
Y.-C.
Nah
, “
Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles
,”
J. Appl. Phys.
93
,
073307
(
2008
).
4.
S.-W.
Baek
,
J.
Noh
,
C.-H.
Lee
,
B.
Kim
,
M.-K.
Seo
, and
J.-Y.
Lee
, “
Plasmonic forward scattering effect in organic solar cells: A powerful optical engineering method
,”
Sci. Rep.
3
,
1726
(
2013
).
5.
L.
Lu
,
Z.
Luo
,
T.
Xu
, and
L.
Yu
, “
Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells
,”
Nano Lett.
13
,
59
64
(
2013
).
6.
H. A.
Atwater
and
A.
Polman
, “
Plasmonics for improved photovoltaic devices
,”
Nat. Mater.
9
(
3
),
205
213
(
2010
).
7.
F.-C.
Chen
,
J.-L.
Wu
,
C.-L.
Lee
,
Y.
Hong
,
C.-H.
Kuo
, and
M. H.
Huang
, “
Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles
,”
J. Appl. Phys.
95
,
013305
(
2009
).
8.
E.
Hao
and
G. C.
Schatz
, “
Electromagnetic fields around silver nanoparticles and dimers
,”
J. Chem. Phys.
120
,
357
(
2004
).
9.
N. M.
Lawandy
, “
Localized surface plasmon singularities in amplifying media
,”
J. Appl. Phys.
85
,
5040
(
2004
).
10.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
(
3
),
668
677
(
2003
).
11.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
, Wiley Science Paperback Series (
Wiley
,
1983
).
12.
J.-Y.
Lee
and
P.
Peumans
, “
The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer
,”
Opt. Express
18
(
10
),
10078
10087
(
2010
).
13.
P.
Spinelli
and
A.
Polman
, “
Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles
,”
Opt. Express
20
(S
5
),
A641
A654
(
2012
).
14.
F.
Guo
,
P.
Kubis
,
T.
Stubhan
,
N.
Li
,
D.
Baran
,
T.
Przybilla
,
E.
Spiecker
,
K.
Forberich
, and
C.
Brabec
, “
Fully solution-processing route toward highly transparent polymer solar cells
,”
ACS Appl. Mater. Interfaces
6
(
20
),
18251
18257
(
2014
).
15.
K.
Yee
, “
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
,”
IEEE Trans. Antennas Propag.
14
(
3
),
302
307
(
1966
).
16.
C.
Pflaum
and
Z.
Rahimi
, “
An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity
,”
Numer. Linear Algebra Appl.
18
(
4
),
653
670
(
2011
).
17.
S.
Yan
,
J.
Krantz
,
K.
Forberich
,
C.
Pflaum
, and
C.
Brabec
, “
Numerical simulation of light propagation in silver nanowire films using time-harmonic inverse iterative method
,”
Appl. Phys. Lett.
113
(
15
),
154303
(
2013
).
18.
Z.
Rahimi
,
A.
Erdmann
, and
C.
Pflaum
, “
Finite integration (FI) method for modelling optical waves in lithography masks
,” in
International Conference on Electromagnetics in Advanced Applications
(ICEAA'09) (
2009
), pp.
809
812
.
19.
L. A. A.
Pettersson
,
L. S.
Roman
, and
O.
Inganäs
, “
Modeling photocurrent action spectra of photovoltaic devices based on organic thin films
,”
Appl. Phys. Lett.
86
(
1
),
487
496
(
1999
).
20.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
(
Springer
,
1995
), Vol.
3
.
21.
B. P.
Rand
,
P.
Peumans
, and
S. R.
Forrest
, “
Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters
,”
J. Appl. Phys.
96
(
12
),
7519
7526
(
2004
).
22.
J.-P.
Berenger
, “
Perfectly matched layer for the FDTD solution of wave-structure interaction problems
,”
IEEE Trans. Antennas Propag.
44
(
1
),
110
117
(
1996
).
23.
H.
Choi
,
J.-P.
Lee
,
S.-J.
Ko
,
J.-W.
Jung
,
H.
Park
,
S.
Yoo
,
O.
Park
,
J.-R.
Jeong
,
S.
Park
, and
J. Y.
Kim
, “
Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells
,”
Nano Lett.
13
(
5
),
2204
2208
(
2013
).
24.
A.
Čampa
, see http://lpvo.fe.uni-lj.si/en/software/nika/ for “NIKA software” (last accessed June
2016
).
25.
S.
Wang
,
D.-A.
Borca-Tasciuc
, and
D. A.
Kaminski
, “
The effect of particle vertical positioning on the absorption enhancement in plasmonic organic solar cells
,”
J. Appl. Phys.
111
,
124301
(
2012
).
You do not currently have access to this content.