The surface treatment of ultralow-κ dielectric layers by exposure to atomic oxygen is presented as a potential mechanism to modify the chemical composition of the dielectric surface to facilitate copper diffusion barrier layer formation. High carbon content, low-κ dielectric films of varying porosity were exposed to atomic oxygen treatments at room temperature, and x-ray photoelectron spectroscopy studies reveal both the depletion of carbon and the incorporation of oxygen at the surface. Subsequent dynamic water contact angle measurements show that the chemically modified surfaces become more hydrophilic after treatment, suggesting that the substrates have become more “SiO2-like” at the near surface region. This treatment is shown to be thermally stable up to 400 °C. High resolution electron energy loss spectroscopy elemental profiles confirm the localised removal of carbon from the surface region. Manganese (≈1 nm) was subsequently deposited on the modified substrates and thermally annealed to form surface localized MnSiO3 based barrier layers. The energy-dispersive X-ray spectroscopy elemental maps show that the atomic oxygen treatments facilitate the formation of a continuous manganese silicate barrier within dense low-k films, but significant manganese diffusion is observed in the case of porous substrates, negatively impacting the formation of a discrete barrier layer. Ultimately, the atomic oxygen treatment proves effective in modifying the surface of non-porous dielectrics while continuing to facilitate barrier formation. However, in the case of high porosity films, diffusion of manganese into the bulk film remains a critical issue.
Skip Nav Destination
Article navigation
14 September 2016
Research Article|
September 13 2016
In-situ surface and interface study of atomic oxygen modified carbon containing porous low-κ dielectric films for barrier layer applications
J. Bogan;
J. Bogan
1School of Physical Sciences,
Dublin City University
, Glasnevin, Dublin 9, Ireland
Search for other works by this author on:
R. Lundy;
R. Lundy
b)
2Stokes Institute,
University of Limerick, Co.
, Limerick, Ireland
Search for other works by this author on:
A. P. McCoy;
A. P. McCoy
b)
1School of Physical Sciences,
Dublin City University
, Glasnevin, Dublin 9, Ireland
Search for other works by this author on:
R. O'Connor;
R. O'Connor
b)
1School of Physical Sciences,
Dublin City University
, Glasnevin, Dublin 9, Ireland
Search for other works by this author on:
C. Byrne;
C. Byrne
b)
1School of Physical Sciences,
Dublin City University
, Glasnevin, Dublin 9, Ireland
Search for other works by this author on:
L. Walsh;
L. Walsh
b)
1School of Physical Sciences,
Dublin City University
, Glasnevin, Dublin 9, Ireland
Search for other works by this author on:
P. Casey;
P. Casey
b)
1School of Physical Sciences,
Dublin City University
, Glasnevin, Dublin 9, Ireland
Search for other works by this author on:
a)
E-mail: justin.bogan@dcu.ie
b)
All authors contributed equally to this work.
J. Appl. Phys. 120, 105305 (2016)
Article history
Received:
May 10 2016
Accepted:
August 24 2016
Citation
J. Bogan, R. Lundy, A. P. McCoy, R. O'Connor, C. Byrne, L. Walsh, P. Casey, G. Hughes; In-situ surface and interface study of atomic oxygen modified carbon containing porous low-κ dielectric films for barrier layer applications. J. Appl. Phys. 14 September 2016; 120 (10): 105305. https://doi.org/10.1063/1.4962371
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00