We compare the use of externally applied pulsed and steady magnetic fields for the enhancement of deposition rate in reactive High Power Impulse Magnetron Sputtering (HiPIMS), using the deposition of amorphous hafnium oxide (a-HfO2) on Si as an example. The external magnetic fields were applied by a solenoidal coil, placed above the magnetron target. In the case of a steady magnetic field, a higher voltage was required to initiate the HiPIMS discharge, a longer delay time was observed for current onset, and the films became substoichiometric. For the pulsed magnetic field, film stoichiometry was maintained under all applied external magnetic field strengths. Varying the duration and delay times of the magnetic field after the application of HiPIMS voltage pulse revealed that the afterglow of the plasma between HiPIMS pulses was actively quenched by the presence of the magnetic field. Therefore, the optimum operation with the highest plasma density was obtained by applying the external magnetic field only when the plasma was established and removing it at the end of the HiPIMS pulse. A model to explain the findings is presented in which the target poisoning by oxide formation is determined by the conditions in the afterglow. We describe an approach to achieve maximum deposition rate while maintaining film stoichiometry and high film quality. Amorphous HfO2 films with leakage current through the film of less than 5 × 10−5 A/cm2 at 0.1 MV/cm were obtained at the maximum deposition rate. The refractive index, at a wavelength of 500 nm, of the film prepared with pulsed magnetic field was 2.05 with a very low extinction coefficient of 8 × 10−5.

1.
A.
Anders
,
Surf. Coat. Technol.
257
,
308
(
2014
).
2.
K.
Sarakinos
,
J.
Alami
, and
S.
Konstantinidis
,
Surf. Coat. Technol.
204
,
1661
(
2010
).
3.
U.
Helmersson
,
M.
Lattemann
,
J.
Bohlmark
,
A. P.
Ehiasarian
, and
J. T.
Gudmundsson
,
Thin Solid Films
513
,
1
(
2006
).
4.
R.
Ganesan
,
B. J.
Murdoch
,
J. G.
Partridge
,
S.
Bathgate
,
B.
Treverrow
,
X.
Dong
,
A. E.
Ross
,
D. G.
McCulloch
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Appl. Surf. Sci.
365
,
336
(
2016
).
5.
R.
Ganesan
,
D. G.
McCulloch
,
N. A.
Marks
,
M. D.
Tucker
,
J. G.
Partridge
,
M. M. M.
Bilek
, and
D. R.
McKenzie
,
J. Phys. D: Appl. Phys.
48
,
442001
(
2015
).
6.
M.
Samuelsson
,
D.
Lundin
,
J.
Jensen
,
M. A.
Raadu
,
J. T.
Gudmundsson
, and
U.
Helmersson
,
Surf. Coat. Technol.
205
,
591
(
2010
).
7.
M.
Vergoehl
,
R.
Bandorf
, and
P.
Giesel
, in
High Power Pulse Magnetron Sputtering: A New Process for Industrial High Quality Optical Coatings?
(
Optical Society of America
,
Tucson, Arizona
,
2007
), p.
MB7
.
8.
A.
Anders
,
J. Vac. Sci. Technol. A
28
,
783
(
2010
).
9.
D. J.
Christie
,
J. Vac. Sci. Technol. A
23
,
330
(
2005
).
10.
R.
Ganesan
,
B. J.
Murdoch
,
B.
Treverrow
,
A. E.
Ross
,
I. S.
Falconer
,
A.
Kondyurin
,
D. G.
McCulloch
,
J. G.
Partridge
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
Plasma Sources Sci. Technol.
24
,
035015
(
2015
).
11.
M.
Audronis
and
V.
Bellido-Gonzalez
,
Thin Solid Films
518
,
1962
(
2010
).
12.
J.
Bohlmark
,
M.
Östbye
,
M.
Lattemann
,
H.
Ljungcrantz
,
T.
Rosell
, and
U.
Helmersson
,
Thin Solid Films
515
,
1928
(
2006
).
13.
I.
Ivanov
,
P.
Kazansky
,
L.
Hultman
,
I.
Petrov
, and
J. E.
Sundgren
,
J. Vac. Sci. Technol. A
12
,
314
(
1994
).
14.
X. B.
Zhang
,
J. Q.
Xiao
,
Z. L.
Pei
,
J.
Gong
, and
C.
Sun
,
J. Vac. Sci. Technol. A
25
,
209
(
2007
).
15.
P. M.
Barker
,
S.
Konstantinidis
,
E.
Lewin
,
N.
Britun
, and
J.
Patscheider
,
Surf. Coat. Technol.
258
,
631
(
2014
).
16.
A.
Anders
and
J.
Brown
,
IEEE Trans. Plasma Sci.
39
,
2528
(
2011
).
17.
A.
Anders
, U.S. patent application US 13/645,962 (21 Feb
2013
).
18.
A.
Anders
, U.S. patent US 8,574,410 (5 Nov
2013
).
19.
J.
Capek
,
M.
Hala
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Phys. D: Appl. Phys.
46
,
205205
(
2013
).
20.
J.
Čapek
,
M.
Hála
,
O.
Zabeida
,
J. E.
Klemberg-Sapieha
, and
L.
Martinu
,
J. Appl. Phys.
111
,
023301
(
2012
).
21.
M.
Anurag
,
P. J.
Kelly
, and
J. W.
Bradley
,
Plasma Sources Sci. Technol.
19
,
045014
(
2010
).
22.
T.
Jäger
,
Y. E.
Romanyuk
,
A. N.
Tiwari
, and
A.
Anders
,
J. Appl. Phys.
116
,
033301
(
2014
).
23.
K.
Chan Heo
,
Y.
Sohn
, and
J.
Seog Gwag
,
Ceram. Int.
41
,
617
(
2015
).
24.
B. J.
Murdoch
,
R.
Ganesan
,
D. R.
McKenzie
,
M. M. M.
Bilek
,
D. G.
McCulloch
, and
J. G.
Partridge
,
Appl. Phys. Lett.
107
,
112903
(
2015
).
25.
F. M.
Li
,
B. C.
Bayer
,
S.
Hofmann
,
J. D.
Dutson
,
S. J.
Wakeham
,
M. J.
Thwaites
,
W. I.
Milne
, and
A. J.
Flewitt
,
Appl. Phys. Lett.
98
,
252903
(
2011
).
26.
C. M.
Herzinger
,
B.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
,
J. Appl. Phys.
83
,
3323
(
1998
).
27.
P.
Poolcharuansin
and
J.
Bradley
,
Plasma Sources Sci. Technol.
19
,
025010
(
2010
).
28.
A.
Hecimovic
and
A. P.
Ehiasarian
,
IEEE Trans. Plasma Sci.
39
,
1154
(
2011
).
29.
A. E.
Ross
,
R.
Sanginés
,
B.
Treverrow
,
M. M. M.
Bilek
, and
D. R.
McKenzie
,
Plasma Sources Sci. Technol.
20
,
035021
(
2011
).
30.
R.
Ganesan
,
B.
Treverrow
,
B. J.
Murdoch
,
A. E.
Ross
,
I. S.
Falconer
,
X.
Dong
,
D. G.
McCulloch
,
J. G.
Partridge
,
D. R.
McKenzie
, and
M. M. M.
Bilek
,
J. Phys. D: Appl. Phys.
49
,
245201
(
2016
).
31.
G. Y.
Yushkov
and
A.
Anders
,
IEEE Trans. Plasma Sci.
38
,
3028
(
2010
).
32.
G. V.
Samsonov
,
The Oxide Handbook
(
IFI/Plenum
,
New York and London
,
1982
).
33.
C. G. H.
Walker
,
M. M.
El-Gomati
,
A. M. D.
Assa'd
, and
M.
Zadražil
,
Scanning
30
,
365
(
2008
).
34.
M.
Bowes
and
J.
Bradley
,
J. Phys. D: Appl. Phys.
47
,
265202
(
2014
).
You do not currently have access to this content.