We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

1.
Z.
Ni
,
H.
Zhong
,
X.
Jiang
,
R.
Quhe
,
G.
Luo
,
Y.
Wang
,
M.
Ye
,
J.
Yang
,
J.
Shi
, and
J.
Lu
,
Nanoscale
6
,
7609
(
2014
).
2.
W.-F.
Tsai
,
C.-Y.
Huang
,
T.-R.
Chang
,
H.
Lin
,
H.-T.
Jeng
, and
A.
Bansil
,
Nat. Commun.
4
,
1500
(
2013
).
3.
S. B.
Kumar
and
J.
Guo
,
Appl. Phys. Lett.
98
,
222101
(
2011
).
4.
Y.
Liang
,
V.
Wang
,
H.
Mizuseki
, and
Y.
Kawazoe
,
J. Phys.: Condens. Matter
24
,
455302
(
2012
).
5.
V. I.
Artyukhov
and
L. A.
Chernozatonskii
,
J. Phys. Chem. C
114
,
9678
(
2010
).
6.
C. H.
Lui
,
Z.
Li
,
K. F.
Mak
,
E.
Cappelluti
, and
T. F.
Heinz
,
Nat. Phys.
7
,
944
(
2011
).
7.
I. A.
Luk'yanchuk
,
Y.
Kopelevich
, and
M.
El Marssi
,
Phys. B: Condens. Matter
404
,
404
(
2009
).
8.
M.
Ezawa
,
J. Phys. Soc. Jpn.
84
,
121003
(
2015
).
9.
E.
McCann
and
M.
Koshino
,
Rep. Prog. Phys.
76
,
056503
(
2013
).
10.
E.
Castro
,
K.
Novoselov
,
S.
Morozov
,
N.
Peres
,
J.
dos Santos
,
J.
Nilsson
,
F.
Guinea
,
A.
Geim
, and
A.
Neto
,
Phys. Rev. Lett.
99
,
216802
(
2007
).
11.
T.
Ohta
,
A.
Bostwick
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
,
Science
313
,
951
(
2006
).
12.
T.
Khodkov
,
I.
Khrapach
,
M. F.
Craciun
, and
S.
Russo
,
Nano Lett.
15
,
4429
(
2015
).
13.
M.
Koshino
,
New J. Phys.
15
,
015010
(
2013
).
14.
A. G.
Kvashnin
,
D. G.
Kvashnin
,
O. P.
Kvashnina
, and
L. A.
Chernozatonskii
,
Nanotechnology
26
,
385705
(
2015
).
15.
P. B.
Sorokin
,
P. V.
Avramov
,
L. A.
Chernozatonskii
,
D. G.
Fedorov
, and
S. G.
Ovchinnikov
,
J. Phys. Chem. A
112
,
9955
(
2008
).
16.
B.
Sahu
,
H.
Min
,
A.
MacDonald
, and
S.
Banerjee
,
Phys. Rev. B
78
,
045404
(
2008
).
17.
B.
Sahu
,
H.
Min
, and
S. K.
Banerjee
,
Phys. Rev. B
82
,
115426
(
2010
).
18.
W. J.
Yu
and
X.
Duan
,
Sci. Rep.
3
,
1248
(
2013
).
19.
Y. C.
Huang
,
C. P.
Chang
, and
M. F.
Lin
,
J. Appl. Phys.
104
,
103714
(
2008
).
20.
C. P.
Chang
,
Y. C.
Huang
,
C. L.
Lu
,
J. H.
Ho
,
T. S.
Li
, and
M. F.
Lin
,
Carbon
44
,
508
(
2006
).
21.
V. A.
Saroka
,
K. G.
Batrakov
, and
L. A.
Chernozatonskii
,
Phys. Solid State
56
,
2135
(
2014
).
22.
V. A.
Saroka
,
K. G.
Batrakov
,
V. A.
Demin
, and
L. A.
Chernozatonskii
,
J. Phys.: Condens. Matter
27
,
145305
(
2015
).
23.
M.
Ezawa
,
Phys. Rev. B
76
,
245415
(
2007
).
24.
Z. Z.
Zhang
,
K.
Chang
, and
F. M.
Peeters
,
Phys. Rev. B
77
,
235411
(
2008
).
25.
L. A.
Chernozatonskii
,
V. A.
Demin
, and
P. P.
Gusyatnikova
,
Dokl. Phys.
58
,
272
(
2013
).
26.
J.
Fernandez-Rossier
and
J. J.
Palacios
,
Phys. Rev. Lett.
99
,
177204
(
2007
).
27.
P.
Potasz
,
A. D.
Guclu
, and
P.
Hawrylak
,
Phys. Rev. B
81
,
033403
(
2010
).
28.
M.
Zarenia
,
A.
Chaves
,
G. A.
Farias
, and
F. M.
Peeters
,
Phys. Rev. B
84
,
245403
(
2011
).
29.
D. R.
da Costa
,
M.
Zarenia
,
A.
Chaves
,
F. A.
Farias
, and
F. M.
Peeters
,
Carbon
78
,
392
(
2014
).
30.
D. P.
Kosimov
,
A. A.
Dzhurakhalov
, and
F. M.
Peeters
,
Phys. Rev. B
81
,
195414
(
2010
).
31.
T.
Espinosa-Ortega
,
I. A.
Luk'yanchuk
, and
Y. G.
Rubo
,
Superlattices Microstruct.
49
,
283
(
2011
).
32.
T.
Espinosa-Ortega
,
I. A.
Luk'yanchuk
, and
Y. G.
Rubo
,
Phys. Rev. B
87
,
205434
(
2013
).
33.
H.
Abdelsalam
,
T.
Espinosa-Ortega
, and
I.
Lukyanchuk
,
Low Temp. Phys.
41
,
396
(
2015
).
34.
I.
Ozfidan
,
A. D.
Güçlü
,
M.
Korkusinski
, and
P.
Hawrylak
,
Phys. Status Solidi RRL
10
,
102
(
2016
).
35.
A. D.
Güçlü
,
P.
Potasz
, and
P.
Hawrylak
,
Phys. Rev. B
84
,
035425
(
2011
).
36.
H.
Abdelsalam
,
T.
Espinosa-Ortega
, and
I.
Lukyanchuk
,
Superlattices Microstruct.
87
,
137
(
2015
).
37.
D. R.
da Costa
,
M.
Zarenia
,
A.
Chaves
,
G. A.
Farias
, and
F. M.
Peeters
,
Phys. Rev. B
92
,
115437
(
2015
).
38.
D. R.
da Costa
,
M.
Zarenia
,
A.
Chaves
,
G. A.
Farias
, and
F. M.
Peeters
,
Phys. Rev. B
93
,
085401
(
2016
).
39.
T.
Yamamoto
,
T.
Noguchi
, and
K.
Watanabe
,
Phys. Rev. B
74
,
121409
(
2006
).
40.
S.
Cahangirov
,
M.
Topsakal
,
E.
Aktürk
,
H.
Sahin
, and
S.
Ciraci
,
Phys. Rev. Lett.
102
,
236804
(
2009
).
41.
C.
Liu
,
H.
Jiang
, and
Y.
Yao
,
Phys. Rev. B
84
,
195430
(
2011
).
42.
M.
Ezawa
,
New J. Phys.
14
,
033003
(
2012
).
43.
S.
Lee
,
J.
Kim
,
L.
Jonsson
,
J. W.
Wilkins
,
G. W.
Bryant
, and
G.
Klimeck
,
Phys. Rev. B
66
,
235307
(
2002
).
44.
K.
Leung
and
K. B.
Whaley
,
Phys. Rev. B
56
,
7455
(
1997
).
45.
K.
Leung
,
S.
Pokrant
, and
K. B.
Whaley
,
Phys. Rev. B
57
,
12291
(
1998
).
46.
S.
Schulz
,
S.
Schumacher
, and
G.
Czycholl
,
Phys. Rev. B
73
,
245327
(
2006
).
You do not currently have access to this content.