The proposed method allows for an extended analysis of the wave analysis, internal powers, and acoustic performance of anisotropic poroelastic media within semi-infinite multilayered systems under arbitrary excitation. Based on a plane wave expansion, the solution is derived from a first order partial derivative as proposed by Stroh. This allows for an in-depth analysis of the mechanisms controlling the acoustic behaviour in terms of internal powers and wave properties in the media. In particular, the proposed approach is used to highlight the influence of the phenomena intrinsic to anisotropic poroelastic media, such as compression-shear coupling related to the material alignment, the frequency shift of the fundamental resonance, or the appearance of particular geometrical coincidences in multilayered systems with such materials.

1.
J.
Allard
,
R.
Bourdier
, and
A.
L'Esperance
,
J. Sound Vib.
114
,
233
(
1987
).
2.
H. J.
Rice
and
P.
Göransson
,
Int. J. Mech. Sci.
41
,
561
(
1999
).
3.
J. F.
Allard
,
O.
Dazel
,
J.
Descheemaeker
,
N.
Geebelen
,
L.
Boeckx
, and
W.
Lauriks
,
J. Appl. Phys.
106
,
014906
(
2009
).
4.
P.
Göransson
and
N.-E.
Hörlin
,
Acta Acust. Acust.
96
,
258
(
2010
).
5.
J.
Cuenca
,
C.
Van der Kelen
, and
P.
Göransson
,
J. Appl. Phys.
115
,
084904
(
2014
).
6.
E.
Lind Nordgren
,
P.
Göransson
,
J.-F.
Deü
, and
O.
Dazel
,
J. Acoust. Soc. Am.
133
,
EL426
(
2013
).
7.
M. A.
Biot
,
J. Appl. Phys.
25
,
1385
(
1954
).
8.
M. A.
Biot
,
J. Appl. Phys.
26
,
182
(
1955
).
9.
M. A.
Biot
,
J. Acoust. Soc. Am.
28
,
168
(
1956
).
10.
M. A.
Biot
,
J. Appl. Phys.
33
,
1482
(
1962
).
11.
R.
Lewis
and
B.
Schrefler
,
Finite Element Method in the Deformation and Consolidation of Porous Media
(
John Wiley and Sons Inc.
,
New York, NY
,
1998
).
12.
A.
Gajo
,
A.
Saetta
, and
R.
Vitaliani
,
Int. J. Numer. Methods Eng.
37
,
1231
(
1994
).
13.
N.-E.
Hörlin
and
P.
Göransson
,
Int. J. Numer. Methods Eng.
84
,
1519
(
2010
).
14.
L.
Sanchez-Ricart
and
J.
García-Peláez
,
Meccanica
49
,
2757
(
2014
).
15.
P. J.
Matuszyk
and
L. F.
Demkowicz
,
Comput. Methods Appl. Mech. Eng.
281
,
54
(
2014
).
16.
17.
J. M.
Carcione
,
Wave Fields in Real Media
, Handbook of Geophysical Exploration (
Burlington Pergamon
,
Burlington
,
2007
).
18.
J. M.
Carcione
,
D.
Gei
, and
S.
Treitel
,
Geophysics
75
,
T37
(
2010
).
19.
J. M.
Carcione
,
Proc. Math. Phys. Eng. Sci.
457
,
331
(
2001
).
20.
P.
Khurana
,
L.
Boeckx
,
W.
Lauriks
,
P.
Leclaire
,
O.
Dazel
, and
J. F.
Allard
,
J. Acoust. Soc. Am.
125
,
915
(
2009
).
21.
C.
Baron
and
S.
Naili
,
C. R. Méc.
336
,
722
(
2008
).
22.
O.
Dazel
,
J.-P.
Groby
,
B.
Brouard
, and
C.
Potel
,
J. Appl. Phys.
113
,
083506
(
2013
).
23.
Q.
Serra
,
M. N.
Ichchou
, and
J.-F.
Deü
,
J. Comput. Acoust.
23
,
1550020
(
2015
).
24.
O.
Dazel
,
B.
Brouard
,
C.
Depollier
, and
S.
Griffiths
,
J. Acoust. Soc. Am.
121
,
3509
(
2007
).
25.
J.
Cuenca
and
P.
Göransson
,
J. Acoust. Soc. Am.
132
,
621
(
2012
).
26.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
, 2nd ed. (
John Wiley & Sons
,
2009
), pp.
1
358
.
27.
C.
Van der Kelen
and
P.
Göransson
,
J. Acoust. Soc. Am.
134
,
4659
(
2013
).
28.
A. N.
Norris
,
J. Mech. Mater. Struct.
1
,
223
(
2006
).
You do not currently have access to this content.