Thermal activated atomic layer deposited (t) (ALD) and plasma enhanced (p) ALD (PEALD) AlN films were investigated for gate applications of InGaAs based metal-insulator-semiconductor devices and compared to the well-known Al2O3 based system. The roles of post-metallization annealing (PMA) and the pre-deposition treatment (PDT) by either trimethylaluminium (TMA) or NH3 were studied. In contrast to the case of Al2O3, in the case of AlN, the annealing temperature reduced interface states density. In addition, improvement of the AlN film stoichiometry and a related border traps density reduction were observed following PMA. The lowest interface states density (among the investigated gate stacks) was found for PEALD AlN/InGaAs stacks after TMA PDT. At the same time, higher values of the dispersion in accumulation were observed for AlN/InGaAs gate stacks compared to those with Al2O3 dielectric. No indium out-diffusion and the related leakage current degradation due to annealing were observed at the AlN/InGaAs stack. In light of these findings, we conclude that AlN is a promising material for InGaAs based gate stack applications.

1.
S.
Oktyabrsky
and
P. D.
Ye
,
Fundamentals of III-V Semiconductor MOSFETs
(
Springer
,
New York
,
2010
).
2.
G.
Brammertz
,
A.
Alian
,
D. H. C.
Lin
,
M.
Meuris
,
M.
Caymax
, and
W. E.
Wang
,
IEEE Trans. Electron Devices
58
,
3890
(
2011
).
3.
I.
Krylov
,
D.
Ritter
, and
M.
Eizenberg
,
J. Appl. Phys.
117
,
174501
(
2015
).
4.
H. P.
Chen
,
J.
Ahn
,
M. C.
McIntyre
, and
Y.
Taur
,
J. Vac. Sci. Technol., B
32
,
03D111
(
2014
).
5.
H. P.
Komsa
and
A.
Pasquarello
,
Physica B
407
,
2833
(
2012
).
6.
J.
Robertson
,
Appl. Phys. Lett.
94
,
152104
(
2009
).
7.
Y.
Yuan
,
L.
Wang
,
B.
Yo
,
B.
Shin
,
J.
Ahn
,
P. C.
McIntyre
,
P. M.
Asbeck
,
M. J. W.
Rodwell
, and
Y.
Taur
,
IEEE Electron Device Lett.
32
,
485
(
2011
).
8.
A.
Vais
,
H. C.
Lin
,
C.
Dou
,
K.
Martens
,
T.
Ivanov
,
Q.
Xie
,
F.
Tang
,
M.
Givens
,
J.
Maes
,
N.
Collaert
,
J. P.
Raskin
,
K.
DeMeyer
, and
A.
Thean
,
Appl. Phys. Lett.
107
,
053504
(
2015
).
9.
E. H.
Nicollian
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
New York
,
1982
).
10.
D.
Colleoni
,
G.
Miceli
, and
A.
Pasquarello
,
Microelectron. Eng.
147
,
260
(
2015
).
11.
G.
Miceli
and
A.
Pasquarello
,
Microelectron. Eng.
109
,
60
(
2013
).
12.
W.
Wang
,
K.
Xiong
,
R. M.
Wallace
, and
K.
Cho
,
J. Phys. Chem.
114
,
22610
(
2010
).
13.
B.
Shin
,
J. B.
Clemens
,
M. A.
Kelly
,
A. C.
Kummel
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
96
,
252907
(
2010
).
14.
I.
Krylov
,
A.
Gavrilov
,
M.
Eizenberg
, and
D.
Ritter
,
Appl. Phys. Lett.
101
,
063504
(
2012
).
15.
Y.
Hwang
,
R.
Engel-Herbert
, and
S.
Stemmer
,
Appl. Phys. Lett.
98
,
052911
(
2011
).
16.
W.
Jevasuwan
,
Y.
Urabe
,
T.
Maeda
,
N.
Miyata
,
T.
Yasuda
,
H.
Yamada
,
M.
Hata
,
N.
Taoka
,
M.
Takenaka
, and
S.
Takagi
,
Materials
5
,
404
(
2012
).
17.
B.
Brennan
,
D. M.
Zhernokletov
,
H.
Dong
,
C. L.
Hinkle
, and
R. M.
Wallace
,
Appl. Phys. Lett.
100
,
151603
(
2012
).
18.
J.
Ahn
,
T.
Kent
,
E.
Chagarov
,
K.
Tang
,
A. C.
Kummel
, and
P. C.
McIntyre
,
Appl. Phys. Lett.
103
,
071602
(
2013
).
19.
J.
Robertson
and
L.
Lin
,
Appl. Phys. Lett.
99
,
222906
(
2011
).
20.
H.
Zhao
,
J.
Huang
,
Y. T.
Chen
,
J. H.
Yum
,
Y.
Wang
,
F.
Zhou
,
F.
Xue
, and
J. C.
Lee
,
Appl. Phys. Lett.
95
,
253501
(
2009
).
21.
Y.
Guo
,
L.
Lin
, and
J.
Robertson
,
Appl. Phys. Lett.
102
,
091606
(
2013
).
22.
V.
Chobpattana
,
J.
Son
,
J. J. M.
Law
,
R.
Engel-Herbert
,
C. Y.
Huang
, and
S.
Stemmer
,
Appl. Phys. Lett.
102
,
022907
(
2013
).
23.
T.
Hoshii
,
S.
Lee
,
R.
Suzuki
,
N.
Taoka
,
M.
Yokoyama
,
H.
Yamada
,
M.
Hata
,
T.
Yasuda
,
M.
Yokoyama
,
H.
Yamada
,
M.
Hata
,
T.
Yasuda
,
M.
Takenaka
, and
S.
Takagi
,
J. Appl. Phys.
112
,
073702
(
2012
).
24.
H.
Yamashita
,
K.
Fukui
,
S.
Misawa
, and
S.
Yoshida
,
J. Appl. Phys.
50
,
896
(
1979
).
25.
Q. H.
Luc
,
E. Y.
Chang
,
H. D.
Trinh
,
Y. C.
Lin
,
H. Q.
Nguyen
,
Y. Y.
Wong
,
H. B.
Do
,
S.
Salahuddin
, and
C. C.
Hu
,
IEEE Trans. Electron Devices
61
,
2774
(
2014
).
26.
L. S.
Wang
,
L. L.
Liu
,
J. P.
Xu
,
S. Y.
Zhu
,
Y.
Huang
, and
P. T.
Lai
,
IEEE Trans. Electron Devices
91
,
742
(
2014
).
27.
C.
Weiland
,
A. K.
Rumaiz
,
J.
Prices
,
P.
Lysaght
, and
J. C.
Woick
,
J. Appl. Phys.
114
,
034107
(
2013
).
28.
Y. J.
Lee
and
S. W.
Kang
,
Thin Solid Films
446
,
227
(
2003
).
29.
H. V.
Bui
,
F. B.
Wiggers
,
A.
Gupta
,
M. D.
Nguyen
,
A. A.
Aarnik
,
M. P.
de Jong
, and
A. Y.
Kovalgin
,
J. Vac. Sci. Technol., A
33
,
01A111
(
2015
).
30.
A.
Alevli
,
C.
Ozgit
,
I.
Donmez
, and
N.
Biyikli
,
J. Cryst. Growth.
335
,
51
(
2011
).
31.
L.
Bloch
,
Y.
Kauffmann
, and
B.
Pokroy
,
Cryst. Growth Des.
14
,
3983
(
2014
).
32.
R.
Winter
,
J.
Ahn
,
P. C.
McIntyre
, and
M.
Eizenberg
,
J. Vac. Sci. Technol., B
31
,
030604
(
2013
).
33.
S.
Jakschik
,
U.
Schroeder
,
T.
Hecht
,
M.
Gutsche
,
H.
Seidl
, and
J. W.
Bartha
,
Thin Solid Films
425
,
216
(
2003
).
34.
J.
Hu
and
H. S. P.
Wong
,
J. Appl. Phys.
111
,
044105
(
2012
).
35.
O.
Ceballos-Sanchez
,
A.
Sanchez-Martines
,
M. O.
Vazquez-Lepe
,
T.
Duong
,
R.
Arroyave
,
F.
Espinosa-Magana
, and
A.
Herrera-Gomez
,
J. Appl. Phys.
112
,
053527
(
2012
).
36.
I.
Krylov
,
A.
Gavrilov
,
M.
Eizenberg
, and
D.
Ritter
,
Appl. Phys. Lett.
103
,
053502
(
2013
).
37.
R.
Winter
,
I.
Krylov
,
C.
Cytermann
,
K.
Tang
,
J.
Ahn
,
P. C.
McIntyre
, and
M.
Eizenberg
,
J. Appl. Phys.
118
,
055302
(
2015
).
38.
I.
Krylov
,
L.
Kornblum
,
A.
Gavrilov
,
D.
Ritter
, and
M.
Eizenberg
,
Appl. Phys. Lett.
100
,
173508
(
2012
).
39.
I.
Krylov
,
M.
Eizenberg
, and
D.
Ritter
,
Appl. Phys. Lett.
105
,
203506
(
2014
).
40.
C.
Ozgit
,
I.
Donmez
,
M.
Alevli
, and
N.
Biyikli
,
Thin Solid Films
520
,
2750
(
2012
).
You do not currently have access to this content.