We compute the contact resistances Rc in trigate and FinFET devices with widths and heights in the 4–24 nm range using a Non-Equilibrium Green's Functions approach. Electron-phonon, surface roughness, and Coulomb scattering are taken into account. We show that Rc represents a significant part of the total resistance of devices with sub-30 nm gate lengths. The analysis of the quasi-Fermi level profile reveals that the spacers between the heavily doped source/drain and the gate are major contributors to the contact resistance. The conductance is indeed limited by the poor electrostatic control over the carrier density under the spacers. We then disentangle the ballistic and diffusive components of Rc and analyze the impact of different design parameters (cross section and doping profile in the contacts) on the electrical performances of the devices. The contact resistance and variability rapidly increase when the cross sectional area of the channel goes below ≃50 nm2. We also highlight the role of the charges trapped at the interface between silicon and the spacer material.

1.
“The international technology roadmap for semiconductors,” www.itrs.net/.
2.
K.
Kuhn
,
IEEE Trans. Electron Devices
59
,
1813
(
2012
).
3.
C.
Jacoboni
and
L.
Reggiani
,
Rev. Mod. Phys.
55
,
645
(
1983
).
4.
F.
Gamiz
and
M. V.
Fischetti
,
J. Appl. Phys.
89
,
5478
(
2001
).
5.
D.
Esseni
,
A.
Abramo
,
L.
Selmi
, and
E.
Sangiorgi
,
IEEE Trans. Electron Devices
50
,
2445
(
2003
).
6.
K.
Uchida
and
S.-I.
Takagi
,
Appl. Phys. Lett.
82
,
2916
(
2003
).
7.
M.
Casse
,
L.
Thevenod
,
B.
Guillaumot
,
L.
Tosti
,
F.
Martin
,
J.
Mitard
,
O.
Weber
,
F.
Andrieu
,
T.
Ernst
,
G.
Reimbold
,
T.
Billon
,
M.
Mouis
, and
F.
Boulanger
,
IEEE Trans. Electron Devices
53
,
759
(
2006
).
8.
S.
Jin
,
M.
Fischetti
, and
T.-W.
Tang
,
IEEE Trans. Electron Devices
54
,
2191
(
2007
).
9.
P.
Toniutti
,
P.
Palestri
,
D.
Esseni
,
F.
Driussi
,
M. D.
Michielis
, and
L.
Selmi
,
J. Appl. Phys.
112
,
034502
(
2012
).
10.
Y.-M.
Niquet
,
V.-H.
Nguyen
,
F.
Triozon
,
I.
Duchemin
,
O.
Nier
, and
D.
Rideau
,
J. Appl. Phys.
115
,
054512
(
2014
).
11.
V.
Nguyen
,
Y.
Niquet
,
F.
Triozon
,
I.
Duchemin
,
O.
Nier
, and
D.
Rideau
,
IEEE Trans. Electron Devices
61
,
3096
(
2014
).
12.
Y. M.
Niquet
,
I.
Duchemin
,
V.-H.
Nguyen
,
F.
Triozon
, and
D.
Rideau
,
Appl. Phys. Lett.
106
,
023508
(
2015
).
13.
R.
Kotlyar
,
B.
Obradovic
,
P.
Matagne
,
M.
Stettler
, and
M. D.
Giles
,
Appl. Phys. Lett.
84
,
5270
(
2004
).
14.
S.
Jin
,
M. V.
Fischetti
, and
T.
wei Tang
,
J. Appl. Phys.
102
,
083715
(
2007
).
15.
E. B.
Ramayya
,
D.
Vasileska
,
S. M.
Goodnick
, and
I.
Knezevic
,
J. Appl. Phys.
104
,
063711
(
2008
).
16.
S.
Poli
,
M.
Pala
,
T.
Poiroux
,
S.
Deleonibus
, and
G.
Baccarani
,
IEEE Trans. Electron Devices
55
,
2968
(
2008
).
17.
S.
Poli
,
M.
Pala
, and
T.
Poiroux
,
IEEE Trans. Electron Devices
56
,
1191
(
2009
).
18.
M. P.
Persson
,
H.
Mera
,
Y.-M.
Niquet
,
C.
Delerue
, and
M.
Diarra
,
Phys. Rev. B
82
,
115318
(
2010
).
19.
N.
Neophytou
and
H.
Kosina
,
Phys. Rev. B
84
,
085313
(
2011
).
20.
J. W.
Lee
,
D.
Jang
,
M.
Mouis
,
G. T.
Kim
,
T.
Chiarella
,
T.
Hoffmann
, and
G.
Ghibaudo
,
Solid-State Electron.
62
,
195
(
2011
).
21.
S.
Kim
,
M.
Luisier
,
A.
Paul
,
T.
Boykin
, and
G.
Klimeck
,
IEEE Trans. Electron Devices
58
,
1371
(
2011
).
22.
M.
Aldegunde
,
A.
Martinez
, and
A.
Asenov
,
J. Appl. Phys.
110
,
094518
(
2011
).
23.
M.
Luisier
,
Appl. Phys. Lett.
98
,
032111
(
2011
).
24.
K.
Akarvardar
,
C. D.
Young
,
M.
Baykan
,
I.
Ok
,
T.
Ngai
,
K.-W.
Ang
,
M.
Rodgers
,
S.
Gausepohl
,
P.
Majhi
,
C.
Hobbs
,
P.
Kirsch
, and
R.
Jammy
,
IEEE Electron Device Lett.
33
,
351
(
2012
).
25.
V.-H.
Nguyen
,
F.
Triozon
,
F.
Bonnet
, and
Y. M.
Niquet
,
IEEE Trans. Electron Devices
60
,
1506
(
2013
).
26.
R.
Coquand
,
S.
Barraud
,
M.
Cassé
,
P.
Leroux
,
C.
Vizioz
,
C.
Comboroure
,
P.
Perreau
,
E.
Ernst
,
M.-P.
Samson
,
V.
Maffini-Alvaro
,
C.
Tabone
,
S.
Barnola
,
D.
Munteanu
,
G.
Ghibaudo
,
S.
Monfray
,
F.
Boeuf
, and
T.
Poiroux
,
Solid-State Electron.
88
,
32
(
2013
).
27.
R.
Coquand
,
M.
Casse
,
S.
Barraud
,
D.
Cooper
,
V.
Maffini-Alvaro
,
M.
Samson
,
S.
Monfray
,
F.
Boeuf
,
G.
Ghibaudo
,
O.
Faynot
, and
T.
Poiroux
,
IEEE Trans. Electron Devices
60
,
727
(
2013
).
28.
S.-D.
Kim
,
C.-M.
Park
, and
J.
Woo
,
IEEE Trans. Electron Devices
49
,
457
(
2002
).
29.
S.-D.
Kim
,
C.-M.
Park
, and
J.
Woo
,
IEEE Trans. Electron Devices
49
,
467
(
2002
).
30.
A.
Dixit
,
A.
Kottantharayil
,
N.
Collaert
,
M.
Goodwin
,
M.
Jurczak
, and
K.
De Meyer
,
IEEE Trans. Electron Devices
52
,
1132
(
2005
).
31.
P.
Magnone
,
V.
Subramanian
,
B.
Parvais
,
A.
Mercha
,
C.
Pace
,
M.
Dehan
,
S.
Decoutere
,
G.
Groeseneken
,
F.
Crupi
, and
S.
Pierro
,
Microelectron. Eng.
85
,
1728
(
2008
).
32.
D.
Tekleab
,
S.
Samavedam
, and
P.
Zeitzoff
,
IEEE Trans. Electron Devices
56
,
2291
(
2009
).
33.
M. G.
Parada
,
C.
Malheiro
,
P. G.
Agopian
, and
R. C.
Giacomini
,
ECS Trans.
39
,
255
(
2011
).
34.
S. J.
Park
,
D.-Y.
Jeon
,
L.
Montès
,
S.
Barraud
,
G.-T.
Kim
, and
G.
Ghibaudo
,
Semicond. Sci. Technol.
28
,
065009
(
2013
).
35.
C.-W.
Sohn
,
C. Y.
Kang
,
M.-D.
Ko
,
D.-Y.
Choi
,
H. C.
Sagong
,
E.-Y.
Jeong
,
C.-H.
Park
,
S.-H.
Lee
,
Y.-R.
Kim
,
C.-K.
Baek
,
J.-S.
Lee
,
J.
Lee
, and
Y.-H.
Jeong
,
IEEE Trans. Electron Devices
60
,
1302
(
2013
).
36.
T.
An
,
K.
Choe
,
K.-W.
Kwon
, and
S.
Kim
,
J. Semicond. Technol. Sci.
14
,
525
(
2014
).
37.
A.
Pereira
and
R.
Giacomini
,
Microelectron. Reliab.
55
,
470
(
2015
).
38.
J.-S.
Yoon
,
E.-Y.
Jeong
,
S.-H.
Lee
,
Y.-R.
Kim
,
J.-H.
Hong
,
J.-S.
Lee
, and
Y.-H.
Jeong
,
Jpn. J. Appl. Phys., Part 1
54
,
04DC06
(
2015
).
39.
S.
Berrada
,
M.
Bescond
,
N.
Cavassilas
,
L.
Raymond
, and
M.
Lannoo
,
Appl. Phys. Lett.
107
,
153508
(
2015
).
40.
J.-P.
Colinge
,
Solid-State Electron.
48
,
897
(
2004
).
41.
M. P.
Anantram
,
M. S.
Lundstrom
, and
D. E.
Nikonov
,
Proc. IEEE
96
,
1511
(
2008
).
42.
W.
Shockley
, “
Research and investigation of inverse epitaxial UHF power transistors
,”
Report No. A1-TOR-64-207
, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Ohio, September
1964
.
43.
The system is therefore modeled as a periodic array of nanowires connected to thick source and drain films. The convergence with respect to tSD, WSD, and LSD has been carefully checked.
44.
S. M.
Goodnick
,
D. K.
Ferry
,
C. W.
Wilmsen
,
Z.
Liliental
,
D.
Fathy
, and
O. L.
Krivanek
,
Phys. Rev. B
32
,
8171
(
1985
).
45.

The probability to find a dopant at a given point of the source is proportional to the background dopant concentration Nback shown in Fig. 2. A distribution of point charges Npoint is picked randomly and mixed with Nback near the edge z = zmin of the simulation box: N = α(z)Nback + [1 – α(z)]Npoint, where α(z)1=1+10(zzmix)/λmix, with zmix = zmin + 4 nm and λmix = 0.66 nm.

46.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
(
Cambridge University Press
,
2013
).
47.
G.
Bastard
,
Wave Mechanics Applied to Semiconductor Heterostructures
(
Les Éditions de Physique
,
1988
).
48.
M. S.
Sze
and
K. N.
Kwok
,
Physics of Semiconductor Devices
(
John Wiley and Sons
,
New-York
,
2006
).
49.
M.
Fischetti
,
S.
Jin
,
T.-W.
Tang
,
P.
Asbeck
,
Y.
Taur
,
S.
Laux
,
M.
Rodwell
, and
N.
Sano
,
J. Comput. Electron.
8
,
60
(
2009
).
50.
C.
Li
,
M.
Bescond
, and
M.
Lannoo
,
Phys. Rev. B
80
,
195318
(
2009
).
51.
R.
Lavieville
,
F.
Triozon
,
S.
Barraud
,
A.
Corna
,
X.
Jehl
,
M.
Sanquer
,
J.
Li
,
A.
Abisset
,
I.
Duchemin
, and
Y.-M.
Niquet
,
Nano Lett.
15
,
2958
(
2015
).
52.
N.
Seoane
,
A.
Martinez
,
A.
Brown
,
J.
Barker
, and
A.
Asenov
,
IEEE Trans. Electron Devices
56
,
1388
(
2009
).
53.
A.
Martinez
,
M.
Aldegunde
,
N.
Seoane
,
A.
Brown
,
J.
Barker
, and
A.
Asenov
,
IEEE Trans. Electron Devices
58
,
2209
(
2011
).
54.
S.
Datta
,
F.
Assad
, and
M.
Lundstrom
,
Superlattices Microstruct.
23
,
771
(
1998
).
55.
M.
Shur
,
IEEE Electron Device Lett.
23
,
511
(
2002
).
56.
G.
Ghibaudo
,
Electron. Lett.
24
,
543
(
1988
).
57.
D.
Rideau
,
F.
Monsieur
,
O.
Nier
,
Y.
Niquet
,
J.
Lacord
,
V.
Quenette
,
G.
Mugny
,
G.
Hiblot
,
G.
Gouget
,
M.
Quoirin
,
L.
Silvestri
,
F.
Nallet
,
C.
Tavernier
, and
H.
Jaouen
, in
2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
(
2014
), pp.
101
104
.
58.
J.-H.
Rhew
,
Z.
Ren
, and
M. S.
Lundstrom
,
Solid-State Electron.
46
,
1899
(
2002
).
59.
M.
Büttiker
,
Y.
Imry
,
R.
Landauer
, and
S.
Pinhas
,
Phys. Rev. B
31
,
6207
(
1985
).
60.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
61.
C.
Jacoboni
,
C.
Canali
,
G.
Ottaviani
, and
A. A.
Quaranta
,
Solid-State Electron.
20
,
77
(
1977
).
62.

R¯0NW can either be obtained from a ballistic NEGF calculation in a homogeneous nanowire or from the band structure of that nanowire (see, e.g., Refs. 63 and 64).

63.
K.
Natori
,
J. Appl. Phys.
76
,
4879
(
1994
).
64.
A.
Rahman
,
J.
Guo
,
S.
Datta
, and
M.
Lundstrom
,
IEEE Trans. Electron Devices
50
,
1853
(
2003
).
65.

V̂t can be slightly different from Vt defined in Section II C, as the former is based on a density criterion, and the latter on a current criterion.

66.

The planar (001) FDSOI device used for comparison in Fig. 10 is a 8 nm thick Si film on a 25 nm thick BOX with the same gate stack and surface roughness parameters as the trigate devices (namely, Λ = 1.5 nm and Δ = 0.25 nm on the bottom interface with the BOX, and Λ = 1.5 nm and Δ = 0.35 nm on the top interface with the gate stack). The planar (110) FDSOI device is the same, but with Λ = 2.0 nm and Δ = 0.45 nm on both top and bottom interfaces. The planar (110) double-gate device is, likewise, a symmetric structure with a 8 nm thick film, and Λ = 2.0 nm, Δ = 0.45 nm on both interfaces.

67.
S.
Markov
,
B.
Cheng
, and
A.
Asenov
,
IEEE Electron Device Lett.
33
,
315
(
2012
).
68.
The source and drain can be modeled as 90 × 90 nm pads with contact resistivities ρc ≃ 2 × 10−8 Ω cm2. For a typical effective width Weff = 50 nm, these pads therefore make a contribution to the contact resistance R¯c24Ω.μm.
69.
K.
Ohuchi
,
C.
Lavoie
,
B.
Yang
,
M.
Kondo
,
K.
Matsuzawa
, and
P. M.
Solomon
,
Jpn. J. Appl. Phys., Part 1
51
,
101302
(
2012
).
70.
M.
Zilli
,
D.
Esseni
,
P.
Palestri
, and
L.
Selmi
,
IEEE Electron Device Lett.
28
,
1036
(
2007
).
71.
V.
Barral
,
T.
Poiroux
,
D.
Munteanu
,
J.
Autran
, and
S.
Deleonibus
,
IEEE Trans. Electron Devices
56
,
420
(
2009
).
You do not currently have access to this content.