The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

1.
J.
Poortmans
and
V.
Arkhipov
,
Thin Film Solar Cells: Fabrication, Characterization and Applications
(
John Wiley & Sons
,
2006
), Vol. 5.
2.
C. A.
Wolden
,
J.
Kurtin
,
J. B.
Baxter
,
I.
Repins
,
S. E.
Shaheen
,
J. T.
Torvik
,
A. A.
Rockett
,
V. M.
Fthenakis
, and
E. S.
Aydil
,
J. Vac. Sci. Technol.
29
,
030801
(
2011
).
3.
R.
Jones-Albertus
,
D.
Feldman
,
R.
Fu
,
K.
Horowitz
, and
M.
Woodhouse
, “
Technology advances needed for photovoltaics to achieve widespread grid price parity
” (
2015
); Retrieved from: http://energy.gov/eere/sunshot/downloads/technology-advances-needed-photovoltaics-achieve-widespread-grid-price-parity.
4.
N. R.
Paudel
and
Y.
Yan
,
Appl. Phys. Lett.
105
,
183510
(
2014
).
5.
M.
Topic
,
R. M.
Geisthardt
, and
J. R.
Sites
,
IEEE J. Photovoltaics
5
,
360
(
2015
).
6.
M.
Nardone
,
J. Appl. Phys.
115
,
234502
(
2014
).
7.
M.
Nardone
and
D. S.
Albin
,
IEEE J. Photovoltaics
5
,
962
(
2015
).
8.
V. G.
Karpov
,
A. D.
Compaan
, and
D.
Shvydka
,
Phys. Rev. B
69
,
045325
(
2004
).
9.
M.
Nardone
, U.S. patent application 62/130,852 (March
2015
).
10.
D.
Josell
,
C.
Beauchamp
,
S.
Jung
,
B.
Hamadani
,
A.
Motayed
,
L.
Richter
,
M.
Williams
,
J.
Bonevich
,
A.
Shapiro
,
N.
Zhitenev
 et al,
J. Electrochem. Soc.
156
,
H654
(
2009
).
11.
C.
Hangarter
,
B.
Hamadani
,
J.
Guyer
,
H.
Xu
,
R.
Need
, and
D.
Josell
,
J. Appl. Phys.
109
,
073514
(
2011
).
12.
D. U.
Kim
,
C. M.
Hangarter
,
R.
Debnath
,
J. Y.
Ha
,
C. R.
Beauchamp
,
M. D.
Widstrom
,
J. E.
Guyer
,
N.
Nguyen
,
B. Y.
Yoo
, and
D.
Josell
,
Sol. Energy Mater. Sol. Cells
109
,
246
(
2013
).
13.
C. M.
Hangarter
,
R.
Debnath
,
J. Y.
Ha
,
M. A.
Sahiner
,
C. J.
Reehil
,
W. A.
Manners
, and
D.
Josell
,
ACS Appl. Mater. Interfaces
5
,
9120
(
2013
).
14.
D.
Josell
,
R.
Debnath
,
J. Y.
Ha
,
J.
Guyer
,
M. A.
Sahiner
,
C. J.
Reehil
,
W. A.
Manners
, and
N. V.
Nguyen
,
ACS Appl. Mater. Interfaces
6
,
15972
(
2014
).
15.
M.
Kim
,
J. H.
Park
,
J. H.
Kim
,
J. H.
Sung
,
S. B.
Jo
,
M.-H.
Jo
, and
K.
Cho
,
Adv. Energy Mater.
5
,
1401317
(
2015
).
16.
S.
Nagata
,
G. M.
Atkinson
,
D.
Pestov
,
G. C.
Tepper
, and
J. T.
McLeskey
,
Sol. Energy Mater. Sol. Cells
95
,
1594
(
2011
).
17.
M.
Lammert
and
R. J.
Schwartz
,
IEEE Trans. Electron Devices
24
,
337
(
1977
).
18.
D. D.
Smith
,
P. J.
Cousins
,
A.
Masad
,
A.
Waldhauer
,
S.
Westerberg
,
M.
Johnson
,
X.
Tu
,
T.
Dennis
,
G.
Harley
,
G.
Solomon
 et al, in
38th IEEE Photovoltaic Specialists Conference
(
PVSC) (IEEE
,
2012
), pp.
001594
001597
.
19.
K.
Masuko
,
M.
Shigematsu
,
T.
Hashiguchi
,
D.
Fujishima
,
M.
Kai
,
N.
Yoshimura
,
T.
Yamaguchi
,
Y.
Ichihashi
,
T.
Mishima
,
N.
Matsubara
,
T.
Yamanishi
,
T.
Takahama
,
M.
Taguchi
,
E.
Maruyama
, and
S.
Okamoto
,
IEEE J. Photovoltaics
4
,
1433
(
2014
).
20.
N.
Mingirulli
,
J.
Haschke
,
R.
Gogolin
,
R.
Ferré
,
T. F.
Schulze
,
J.
Düsterhöft
,
N.-P.
Harder
,
L.
Korte
,
R.
Brendel
, and
B.
Rech
,
Phys. Status Solidi RRL
5
,
159
(
2011
).
21.
S.-Y.
Lee
,
H.
Choi
,
H.
Li
,
K.
Ji
,
S.
Nam
,
J.
Choi
,
S.-W.
Ahn
,
H.-M.
Lee
, and
B.
Park
,
Sol. Energy Mater. Sol. Cells
120
,
412
(
2014
).
22.
A.
Tomasi
,
B.
Paviet-Salomon
,
D.
Lachenal
,
S.
Martin de Nicolas
,
A.
Descoeudres
,
J.
Geissbuhler
,
S.
De Wolf
, and
C.
Ballif
,
IEEE J. Photovoltaics
4
,
1046
(
2014
).
23.
M.
Lu
,
S.
Bowden
,
U.
Das
, and
R.
Birkmire
,
Appl. Phys. Lett.
91
,
063507
(
2007
).
24.
F. J.
Castano
,
D.
Morecroft
,
M.
Cascant
,
H.
Yuste
,
M.
Lamers
,
A. A.
Mewe
,
I. G.
Romijn
,
E. E.
Bende
,
Y.
Komatsu
,
A. W.
Weeber
 et al, in
37th IEEE Photovoltaic Specialists Conference (PVSC)
(IEEE,
2011
), pp.
001038
001042
.
25.
R.
Woehl
,
M.
Rüdiger
,
D.
Biro
, and
J.
Wilde
,
Prog. Photovoltaics
23
,
226
(
2015
).
26.
J.
Haschke
,
D.
Amkreutz
,
L.
Korte
,
F.
Ruske
, and
B.
Rech
,
Sol. Energy Mater. Sol. Cells
128
,
190
(
2014
).
27.
M. J.
Keevers
,
T. L.
Young
,
U.
Schubert
, and
M. A.
Green
, in
22nd European Photovoltaic Solar Energy Conference, Milan
(
2007
), pp.
235
239
.
28.
S.
Jeong
,
M. D.
McGehee
, and
Y.
Cui
,
Nat. Commun.
4
,
2950
(
2013
).
29.
S.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
New York
,
2007
).
30.
S.
Selberherr
,
Analysis and Simulation of Semiconductor Devices
(
Springer Verlag
,
New York
,
1984
).
31.
M.
Gloeckler
,
A. L.
Fahrenbruch
, and
J. R.
Sites
, in
Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan
(
2003
), Vol. 1, pp.
491
494
.
32.
M.
Patel
and
A.
Ray
,
Physica B
407
,
4391
(
2012
).
33.
F.
Liu
,
J.
Zhu
,
J.
Wei
,
Y.
Li
,
M.
Lv
,
S.
Yang
,
B.
Zhang
,
J.
Yao
, and
S.
Dai
,
Appl. Phys. Lett.
104
,
253508
(
2014
).
34.
A.
Fahrenbruch
, “
CSU report: Modeling results for CdS/CdTe solar cells
,”
2000
.
35.
P. J.
Sebastian
,
Thin Solid Films
245
,
132
(
1994
).
36.
X.
Mathew
,
J.
Drayton
,
V.
Parikh
,
N. R.
Mathews
,
X.
Liu
, and
A. D.
Compaan
,
Semicond. Sci. Technol.
24
,
015012
(
2009
).
37.
X.-H.
Zhao
,
M. J.
DiNezza
,
S.
Liu
,
C. M.
Campbell
,
Y.
Zhao
, and
Y.-H.
Zhang
,
Appl. Phys. Lett.
105
,
252101
(
2014
).
38.
C. H.
Swartz
,
M.
Edirisooriya
,
E. G.
LeBlanc
,
O. C.
Noriega
,
P.
Jayathilaka
,
O. S.
Ogedengbe
,
B. L.
Hancock
,
M.
Holtz
,
T. H.
Myers
, and
K. N.
Zaunbrecher
,
Appl. Phys. Lett.
105
,
222107
(
2014
).
39.
R.
Cohen
,
V.
Lyahovitskaya
,
E.
Poles
,
A.
Liu
, and
Y.
Rosenwaks
,
Appl. Phys. Lett.
73
,
1400
(
1998
).
40.
C. K.
Kang
,
S. U.
Yuldashev
,
J. H.
Leem
,
Y. S.
Ryu
,
J. K.
Hyun
,
H. S.
Jung
,
H. J.
Kim
,
T. W.
Kang
,
H. I.
Lee
,
Y. D.
Woo
, and
T. W.
Kim
,
J. Appl. Phys.
88
,
2013
(
2000
).
You do not currently have access to this content.