We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source. Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thickness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n heterojunction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The segmented contacts were effective in applying a high injection current density to the QDs and obtaining emission from excited states of the QDs, resulting in an extension of the bandwidth of the electroluminescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broadband smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated QD-SLD was performed, and OCT images with an axial resolution of ∼4 μm in air were obtained. These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-resolution OCT light source.

1.
D.
Huang
,
E. A.
Swanson
,
C. P.
Lin
,
J. S.
Schuman
,
W. G.
Stinson
,
W.
Chang
,
M. R.
Hee
,
T.
Flotte
,
K.
Gregory
,
C. A.
Puliafito
, and
J. G.
Fujimoto
,
Science
254
,
1178
(
1991
).
2.
M. E.
Brezinski
,
Optical Coherence Tomography: Principles and Applications
(
Academic Press
,
New York
,
2006
).
3.
M. S.
Patterson
,
B. C.
Wilson
, and
D. R.
Wyman
,
Lasers Med. Sci.
6
,
379
(
1991
).
5.
W.
Drexler
,
U.
Morgner
,
F. X.
Kärtner
,
C.
Pitris
,
S. A.
Boppart
,
X. D.
Li
,
E. P.
Ippen
, and
J. G.
Fujimoto
,
Opt. Lett.
24
,
1221
(
1999
).
6.
B.
Povazay
,
K.
Bizheva
,
A.
Unterhuber
,
B.
Hermann
,
H.
Sattmann
,
A. F.
Fercher
,
W.
Drexler
,
A.
Apolonski
,
W. J.
Wadsworth
,
J. C.
Knight
,
P.
St.
,
J.
Russell
,
M.
Vetterlein
, and
E.
Scherzer
,
Opt. Lett.
27
,
1800
(
2002
).
7.
Self-Assembled Quantum Dots
, Lecture Notes in Nanoscale Science and Technology Series Vol.
1
, edited by
Z. M.
Wang
(
Springer
,
New York
,
2008
).
8.
Y.
Arakawa
and
H.
Sakaki
,
Appl. Phys. Lett.
40
,
939
(
1982
).
9.
L.
Goldstein
,
F.
Glas
,
J. Y.
Marzin
,
M. N.
Charasse
, and
G.
Le Roux
,
Appl. Phys. Lett.
47
,
1099
(
1985
).
10.
D.
Leonardo
,
M.
Krishnamurthy
,
C. M.
Reaves
, and
P.
Petroff
,
Appl. Phys. Lett.
63
,
3203
(
1993
).
11.
Z. Z.
Sun
,
D.
Ding
,
Q.
Gong
,
W.
Zhou
,
B.
Xu
, and
Z. G.
Wang
,
Opt. Quantum Electron.
31
,
1235
(
1999
).
12.
Z. Y.
Zhang
,
Z. G.
Wang
,
B.
Xu
,
P.
Jin
,
Zh.
Sun
, and
F. Q.
Liu
,
IEEE Photonics Technol. Lett.
16
,
27
(
2004
).
13.
M.
Rossetti
,
A.
Markus
,
A.
Fiore
,
L.
Occhi
, and
C.
Velez
,
IEEE Photonics Technol. Lett.
17
,
540
(
2005
).
14.
S. K.
Ray
,
K. M.
Groom
,
M. D.
Beattie
,
H. Y.
Liu
,
M.
Hopkinson
, and
R. A.
Hogg
,
IEEE Photonics Technol. Lett.
18
,
58
(
2006
).
15.
P. D. L.
Greenwood
,
D. T. D.
Childs
,
K. M.
Groom
,
B. J.
Stevens
,
M.
Hopkinson
, and
R. A.
Hogg
,
IEEE J. Sel. Top. Quantum Electron.
15
,
757
(
2009
).
16.
Z. Y.
Zhang
,
R. A.
Hogg
,
X. Q.
Lv
, and
Z. G.
Wang
,
Adv. Opt. Photonics
2
,
201
(
2010
).
17.
X.
Li
,
P.
Jin
,
Q.
An
,
Z.
Wang
,
X.
Lv
,
H.
Wei
,
J.
Wu
,
J.
Wu
, and
Z.
Wang
,
Nanoscale Res. Lett.
6
,
625
(
2011
).
18.
N.
Yamamoto
,
K.
Akahane
,
T.
Kawanishi
,
H.
Sotobayashi
,
Y.
Yoshioka
, and
H.
Takai
,
Jpn. J. Appl. Phys., Part 1
51
,
02BG08
(
2012
).
19.
S.
Chen
,
M.
Tang
,
Q.
Jiang
,
J.
Wu
,
V. G.
Dorogan
,
M.
Benamara
,
Y. I.
Mazur
,
G. J.
Salamo
,
P.
Smowton
,
A.
Seeds
, and
H.
Liu
,
ACS Photonics
1
,
638
(
2014
).
20.
N.
Ozaki
,
T.
Yasuda
,
S.
Ohkouchi
,
E.
Watanabe
,
N.
Ikeda
,
Y.
Sugimoto
, and
R. A.
Hogg
,
Jpn. J. Appl. Phys., Part 1
53
,
04EG10
(
2014
).
21.
T.
Yasuda
,
N.
Ozaki
,
H.
Shibata
,
S.
Ohkouchi
,
N.
Ikeda
,
H.
Ohsato
,
E.
Watanabe
,
Y.
Sugimoto
, and
R. A.
Hogg
,
IEICE Trans. Electron.
E99-C
,
381
(
2016
).
22.
H.
Shibata
,
N.
Ozaki
,
T.
Yasuda
,
S.
Ohkouchi
,
N.
Ikeda
,
H.
Ohsato
,
E.
Watanabe
,
Y.
Sugimoto
,
K.
Furuki
,
K.
Miyaji
, and
R. A.
Hogg
,
Jpn. J. Appl. Phys., Part 1
54
,
04DG07
(
2015
).
23.
P.
Blood
,
G. M.
Lewis
,
P. M.
Smowton
,
H.
Summers
,
J.
Thomson
, and
J.
Lutti
,
IEEE J. Sel. Top. Quantum Electron.
9
,
1275
(
2003
).
24.
K.
Nishi
,
H.
Saito
,
S.
Sugou
, and
J.-S.
Lee
,
Appl. Phys. Lett.
74
,
1111
(
1999
).
25.
N.
Ozaki
,
K.
Takeuchi
,
Y.
Hino
,
Y.
Nakatani
,
T.
Yasuda
,
S.
Ohkouchi
,
E.
Watanabe
,
H.
Ohsato
,
N.
Ikeda
,
Y.
Sugimoto
,
E.
Clarke
, and
R. A.
Hogg
,
Nanomater. Nanotechnol.
4
,
26
(
2014
).
26.
Optical Coherence Tomography: Technology and Applications
, edited by
W.
Drexler
and
J. G.
Fujimoto
(
Springer
,
New York
,
2008
).
27.
A. F.
Fercher
,
C. K.
Hitzenberger
,
G.
Kamp
, and
S. Y.
El-Zaiat
,
Opt. Commun.
117
,
43
(
1995
).
28.
G.
Häusler
and
M. W.
Lindner
,
J. Biomed. Opt.
3
,
21
(
1998
).
29.
C.
Dorrer
,
N.
Belabas
,
J.-P.
Likforman
, and
M.
Joffre
,
J. Opt. Soc. Am. B
17
,
1795
(
2000
).
30.
A.
Wojs
,
P.
Hawrylak
,
S.
Fafard
, and
L.
Jacak
,
Phys. Rev. B.
54
,
5604
(
1996
).
31.
L.
Cohen
,
IEEE Signal Proc. Lett.
5
,
292
(
1998
).
You do not currently have access to this content.