Recent ab initio studies showed that the inherent ductility of cubic structured Cr1−xAlxN coatings (as compared with similar hard coatings) significantly increases when alloyed with Ta. As there is only little experimental and theoretical information available, we have performed a combined experimental and ab initio based study on the influence of Ta additions (0, 2, 6, 12, and 26 at. % on the metal sublattice) on structure and mechanical properties of arc evaporated Cr1−x-yAlxTayN coatings with Al/(Cr + Al) ratios >0.61. With increasing Ta-content, the droplet number density decreases and the coating surface smoothens, which is much more pronounced as with increasing the bias potential from −40 to −120 V. Simultaneously, the columnar structure observed for Ta-free Cr0.37Al0.63N significantly changes into a fine-grained structure (crystallite size ∼5 nm) with clearly reduced columnar character. Increasing the Ta content also favors the formation of a preferred 200 growth orientation resulting in a reduction of the indentation moduli E from ∼500 to ∼375 GPa, which is in agreement with ab initio calculations. As the hardness H remains between 34 and 41 GPa, an increased resistance against brittle fracture is indicated with increasing Ta.

1.
A. E.
Reiter
,
V. H.
Derflinger
,
B.
Hanselmann
,
T.
Bachmann
, and
B.
Sartory
, “
Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation
,”
Surf. Coat. Technol.
200
,
2114
2122
(
2005
).
2.
J.
Vetter
, “
Vacuum arc coatings for tools: potential and application
,”
Surf. Coat. Technol.
76–77
,
719
724
(
1995
).
3.
M.
Heinze
, “
Wear resistance of hard coatings in plastics processing
,”
Surf. Coat. Technol.
105
,
38
44
(
1998
).
4.
N.
Bagcivan
,
K.
Bobzin
, and
S.
Theiß
, “
(Cr1−xAlx)N: A comparison of direct current, middle frequency pulsed and high power pulsed magnetron sputtering for injection molding components
,”
Thin Solid Films
528
,
180
186
(
2013
).
5.
S.
Khamseh
,
M.
Nose
,
T.
Kawabata
,
K.
Matsuda
, and
S.
Ikeno
, “
Oxidation resistance of CrAlN films with different microstructures prepared by pulsed DC balanced magnetron sputtering system
,”
Mater. Trans.
51
,
271
276
(
2010
).
6.
W.
Kalss
,
A.
Reiter
,
V.
Derflinger
,
C.
Gey
, and
J. L.
Endrino
, “
Modern coatings in high performance cutting applications
,”
Int. J. Refract. Met. Hard Mater.
24
,
399
404
(
2006
).
7.
P. H.
Mayrhofer
,
H.
Willmann
, and
A. E.
Reiter
, “
Structure evolution of Cr-Al-N hard coatings
,” in
49th Annual Technical Conference Proceedings of Society of Vacuum Coaters
(
2006
), pp.
575
579
.
8.
Y.
Makino
and
K.
Nogi
, “
Synthesis of pseudobinary Cr-Al-N films with B1 structure by rf-assisted magnetron sputtering method
,”
Surf. Coat. Technol.
98
,
1008
1012
(
1998
).
9.
M.
Kawate
,
A.
Kimura
, and
T.
Suzuki
, “
Microhardness and lattice parameter of Cr1−xAlxN films
,”
J. Vac. Sci. Technol., A
20
,
569
(
2002
).
10.
M.
Dopita
,
D.
Rafaja
,
C.
Wüstefeld
,
M.
Růžička
,
V.
Klemm
,
D.
Heger
 et al., “
Interplay of microstructural features in Cr1−xAlxN and Cr1−x−yAlxSiyN nanocomposite coatings deposited by cathodic arc evaporation
,”
Surf. Coat. Technol.
202
,
3199
3207
(
2008
).
11.
Y. X.
Wang
,
S.
Zhang
,
J.-W.
Lee
,
W. S.
Lew
, and
B.
Li
, “
Influence of bias voltage on the hardness and toughness of CrAlN coatings via magnetron sputtering
,”
Surf. Coat. Technol.
206
,
5103
5107
(
2012
).
12.
F.
Rovere
,
D.
Music
,
J. M.
Schneider
, and
P. H.
Mayrhofer
, “
Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr–Al–Y–N hard coatings
,”
Acta Mater.
58
,
2708
2715
(
2010
).
13.
I.-W.
Park
,
D. S.
Kang
,
J. J.
Moore
,
S. C.
Kwon
,
J. J.
Rha
, and
K. H.
Kim
, “
Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system
,”
Surf. Coat. Technol.
201
,
5223
5227
(
2007
).
14.
C.
Tritremmel
,
R.
Daniel
,
M.
Lechthaler
,
H.
Rudigier
,
P.
Polcik
, and
C.
Mitterer
, “
Microstructure and mechanical properties of nanocrystalline Al–Cr–B–N thin films
,”
Surf. Coat. Technol.
213
,
1
7
(
2012
).
15.
R.
Forsén
,
M. P.
Johansson
,
M.
Odén
, and
N.
Ghafoor
, “
Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance
,”
Thin Solid Films.
534
,
394
402
(
2013
).
16.
R.
Franz
,
J.
Neidhardt
,
R.
Kaindl
,
B.
Sartory
,
R.
Tessadri
,
M.
Lechthaler
 et al., “
Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings
,”
Surf. Coat. Technol.
203
,
1101
1105
(
2009
).
17.
P.
Basnyat
,
B.
Luster
,
Z.
Kertzman
,
S.
Stadler
,
P.
Kohli
,
S.
Aouadi
 et al., “
Mechanical and tribological properties of CrAlN-Ag self-lubricating films
,”
Surf. Coat. Technol.
202
,
1011
1016
(
2007
).
18.
M.
Pfeiler
,
G. A.
Fontalvo
,
J.
Wagner
,
K.
Kutschej
,
M.
Penoy
,
C.
Michotte
 et al., “
Arc evaporation of Ti–Al–Ta–N coatings: The effect of bias voltage and Ta on high-temperature tribological properties
,”
Tribol. Lett.
30
,
91
97
(
2008
).
19.
R.
Rachbauer
,
D.
Holec
, and
P. H.
Mayrhofer
, “
Phase stability and decomposition products of Ti–Al–Ta–N thin films
,”
Appl. Phys. Lett.
97
,
151901
(
2010
).
20.
L.
Zhou
,
D.
Holec
, and
P. H.
Mayrhofer
, “
Structure, mechanical, and electric properties of Cr-Al-TM-N materials
” (unpublished).
21.
W. C.
Oliver
and
G. M.
Pharr
, “
An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
,”
J. Mater. Res.
7
,
1564
1583
(
1992
).
22.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
23.
G.
Kresse
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
24.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
26.
A.
Zunger
,
S.-H.
Wei
,
L.
Ferreira
, and
J.
Bernard
, “
Special quasirandom structures
,”
Phys. Rev. Lett.
65
,
353
356
(
1990
).
27.
L.
Zhou
,
D.
Holec
, and
P. H.
Mayrhofer
, “
First-principles study of elastic properties of cubic Cr1−xAlxN alloys
,”
J. Appl. Phys.
113
,
043511
(
2013
).
28.
S.-L.
Shang
,
Y.
Wang
,
D.
Kim
, and
Z.-K.
Liu
, “
First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al
,”
Comput. Mater. Sci.
47
,
1040
1048
(
2010
).
29.
Y.
Le Page
and
P.
Saxe
, “
Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress
,”
Phys. Rev. B
65
,
104104
(
2002
).
30.
F.
Tasnádi
,
M.
Odén
, and
I. a.
Abrikosov
, “
Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
85
,
144112
(
2012
).
31.
D.
Holec
,
F.
Tasnádi
,
P.
Wagner
,
M.
Friák
,
J.
Neugebauer
,
P. H.
Mayrhofer
 et al., “
Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions
,”
Phys. Rev. B
90
,
184106
(
2014
).
32.
J. F.
Nye
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
, 1st ed. (
Clarendon
,
Oxford
,
1985
).
33.
A. O.
Eriksson
,
J. Q.
Zhu
,
N.
Ghafoor
,
M. P.
Johansson
,
J.
Sjölen
,
J.
Jensen
 et al., “
Layer formation by resputtering in Ti-Si-C hard coatings during large scale cathodic arc deposition
,”
Surf. Coat. Technol.
205
,
3923
3930
(
2011
).
34.
B.
Warcholinski
,
A.
Gilewicz
,
J.
Ratajski
,
Z.
Kuklinski
, and
J.
Rochowicz
, “
An analysis of macroparticle-related defects on CrCN and CrN coatings in dependence of the substrate bias voltage
,”
Vacuum
86
,
1235
1239
(
2012
).
35.
S.
Creasey
,
D.
Lewis
,
I.
Smith
, and
W.
Münz
, “
SEM image analysis of droplet formation during metal ion etching by a steered arc discharge
,”
Surf. Coat. Technol.
97
,
163
175
(
1997
).
36.
W.
Münz
,
I.
Smith
,
D.
Lewis
, and
S.
Creasey
, “
Droplet formation on steel substrates during cathodic steered arc metal ion etching
,”
Vacuum
48
,
473
481
(
1997
).
37.
J.
Paulitsch
,
R.
Rachbauer
,
J.
Ramm
,
P.
Polcik
, and
P. H.
Mayrhofer
, “
Influence of Si on the target oxide poisoning during reactive arc evaporation of (Al,Cr)2O3 coatings
,”
Vacuum
100
,
29
32
(
2014
).
38.
M.
Pohler
,
R.
Franz
,
J.
Ramm
,
P.
Polcik
, and
C.
Mitterer
, “
Cathodic arc deposition of (Al,Cr)2O3: Macroparticles and cathode surface modifications
,”
Surf. Coat. Technol.
206
,
1454
(
2011
).
39.
C.
Wüstefeld
,
D.
Rafaja
,
V.
Klemm
,
C.
Michotte
, and
M.
Kathrein
, “
Effect of the aluminium content and the bias voltage on the microstructure formation in Ti1−xAlxN protective coatings grown by cathodic arc evaporation
,”
Surf. Coat. Technol.
205
,
1345
1349
(
2010
).
40.
K.
Sato
,
N.
Ichimiya
,
A.
Kondo
, and
Y.
Tanaka
, “
Microstructure and mechanical properties of cathodic arc ion-plated (Al,Ti)N coatings
,”
Surf. Coat. Technol.
163–164
,
135
143
(
2003
).
41.
M.
Odén
,
J.
Almer
, and
G.
Håkansson
, “
The effects of bias voltage and annealing on the microstructure and residual stress of arc-evaporated Cr–N coatings
,”
Surf. Coat. Technol.
120–121
,
272
276
(
1999
).
42.
C. A.
Davis
, “
A simple model for the formation of compressive stress in thin films by ion bombardment
,”
Thin Solid Films
226
,
30
34
(
1993
).
43.
C.
Stampfl
and
A.
Freeman
, “
Metallic to insulating nature of TaNx: Role of Ta and N vacancies
,”
Phys. Rev. B
67
,
064108
(
2003
).
44.
Y.
Lv
,
L.
Ji
,
X.
Liu
,
H.
Li
,
H.
Zhou
, and
J.
Chen
, “
Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering
,”
Appl. Surf. Sci.
258
,
3864
3870
(
2012
).
45.
B.-S.
Yau
,
C.-W.
Chu
,
D.
Lin
,
W.
Lee
,
J.-G.
Duh
, and
C.-H.
Lin
, “
Tungsten doped chromium nitride coatings
,”
Thin Solid Films
516
,
1877
1882
(
2008
).
46.
V.
Antonov
and
I.
Iordanova
, “
Density-functional study of the crystallographic structure of chromium nitride films
,”
J. Phys.: Conf. Ser.
223
,
012043
(
2010
).
47.
D.
Holec
and
P. H.
Mayrhofer
, “
Surface energies of AlN allotropes from first principles
,”
Scr. Mater.
67
,
760
762
(
2012
).
48.
D.
Gall
,
S.
Kodambaka
,
M. a.
Wall
,
I.
Petrov
, and
J. E.
Greene
, “
Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: An ab initio study
,”
J. Appl. Phys.
93
,
9086
(
2003
).
49.
P. H.
Mayrhofer
,
H.
Willmann
, and
A. E.
Reiter
, “
Structure and phase evolution of Cr–Al–N coatings during annealing
,”
Surf. Coat. Technol.
202
,
4935
4938
(
2008
).
50.
J. A.
Greenwood
and
J. B. P.
Williamson
, “
Contact of nominally flat surfaces
,”
Proc. R. Soc. London, Ser. A
295
,
300
319
(
1966
).
51.
P. H.
Mayrhofer
,
C.
Mitterer
, and
J.
Musil
, “
Structure–property relationships in single- and dual-phase nanocrystalline hard coatings
,”
Surf. Coat. Technol.
174–175
,
725
731
(
2003
).
52.
A.
Matthews
, “
The value of deposition processes for industrial tools
,” in
Proceedings of 1st Conference on Materials Engineering
(Inst. Metall., Univ. Leeds.,
1984
), p.
175
.
You do not currently have access to this content.