Coexistence of two phases of AgNbO3 is shown to explain the experimentally observed polarization–electric field hysteresis loop better than either phase in isolation, based on detailed first-principles calculations of the structural changes and stabilities of different phases of this compound. Calculations confirm a ferroelectric phase transition, whereby the symmetry of the AgNbO3 crystal switches from antiferroelectric Pbcm to ferroelectric Pmc21, under an electric field of 9 MV/cm. The calculated spontaneous polarization (0.61 C/m2) under this field compares well with the experimental value of 0.52 C/m2. After transforming, the structure remains in the ferroelectric state even after the electric field is removed, despite the structure being energetically metastable. As the energy difference between the antiferroelectric and ferroelectric phases is only +0.5 meV/f.u. and the potential energy barrier between them (∼40 meV/f.u.) is comparable to thermal fluctuation energies, it is possible for these two phases to coexist at temperatures well below the paraelectric-antiferroelectric transition temperature (∼626 K). The exploitation of this phenomenon in AgNbO3 and related materials may provide a useful strategy for developing high-performance piezoelectric materials.

1.
D.
Fu
,
M.
Endo
,
H.
Taniguchi
,
T.
Taniyama
, and
M.
Itoh
,
Appl. Phys. Lett.
90
,
252907
(
2007
).
2.
Ph.
Sciau
,
A.
Kania
,
B.
Dkhil
,
E.
Suard
, and
A.
Ratuszna
,
J. Phys.: Condens. Matter
16
,
2795
(
2004
).
3.
I.
Levin
,
V.
Krayzman
,
J. C.
Woicik
,
J.
Karapetrova
,
T.
Proffen
,
M. G.
Tucker
, and
I. M.
Reaney
,
Phys. Rev. B
79
,
104113
(
2009
).
4.
M.
Yashima
,
S.
Matsuyama
,
R.
Sano
,
M.
Itoh
,
K.
Tsuda
, and
D.
Fu
,
Chem. Mater.
23
,
1643
(
2011
).
5.
M.
Yashima
and
S.
Matsuyama
,
J. Phys. Chem. C
116
,
24902
(
2012
).
6.
H.
Chang
,
M.
Shang
,
C.
Zhang
,
H.
Yuan
, and
S.
Feng
,
J. Am. Ceram. Soc.
95
,
3673
(
2012
).
7.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
8.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
9.
H.
Moriwake
,
C. A. J.
Fisher
,
A.
Kuwabara
,
H.
Taniguchi
,
M.
Itoh
, and
I.
Tanaka
,
Phys. Rev. B
84
,
104114
(
2011
).
10.
H.
Taniguchi
,
H. P.
Soon
,
T.
Shimizu
,
H.
Moriwake
,
Y. J.
Shan
, and
M.
Itoh
,
Phys. Rev. B
84
,
174106
(
2011
).
11.
H.
Moriwake
,
C. A. J.
Fisher
,
A.
Kuwabara
, and
T.
Hashimoto
,
Jpn. J. Appl. Phys., Part 1
50
,
09NE02
(
2011
).
12.
I.
Grinberg
and
M.
Rappe
, in
Fundamental Physics in Ferroelectrics
, edited by
P. K.
Davis
and
D. J.
Singh
(
American Institute of Physics
,
2003
), p.
130
.
13.
A.
Shigemi
and
T.
Wada
,
Mol. Simulat.
34
,
1105
(
2008
).
14.
M. K.
Niranjan
and
S.
Asthana
,
Solid State Commun.
152
,
1707
(
2012
).
15.
H.
Moriwake
,
C. A. J.
Fisher
,
A.
Kuwabara
, and
D.
Fu
,
Jpn. J. Appl. Phys., Part 1
51
,
09LE02
(
2012
).
16.
H.
Moriwake
,
C. A. J.
Fisher
,
A.
Kuwabara
, and
D.
Fu
,
Jpn. J. Appl. Phys., Part 1
52
,
09KF08
(
2013
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
18.
X.
Gonze
,
J.-M.
Beuken
,
R.
Caracas
,
F.
Detraux
,
M.
Fuchs
,
G.-M.
Rignanese
,
L.
Sindic
,
M.
Verstraete
,
G.
Zerah
,
F.
Jollet
,
M.
Torrent
,
A.
Roy
,
M.
Mikami
,
Ph.
Ghosez
,
J.-Y.
Raty
, and
D. C.
Allan
,
Comput. Mater. Sci.
25
,
478
(
2002
).
19.
I.
Souza
,
J.
Iniguez
, and
D.
Vanderbilt
,
Phys. Rev. Lett
89
,
117602
(
2002
).
20.
A. M.
Rappe
,
K. M.
Rabe
,
E.
Kaxiras
, and
J. D.
Joannopoulos
,
Phys. Rev. B
41
,
1227
(
1990
).
21.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
22.
G.
Mills
,
H.
Jonsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
23.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
24.
H.
Shimizu
,
H.
Guo
,
S. E.
Reyes-Lillo
,
Y.
Mizuno
,
K. M.
Rabe
, and
C. A.
Randall
,
Dalton Trans.
44
,
10763
(
2015
).
You do not currently have access to this content.