The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

1.
C.
Becker
,
D.
Amkreutz
,
T.
Sontheimer
,
V.
Preidel
,
D.
Lockau
,
J.
Haschke
,
L.
Jogschies
,
C.
Klimm
,
J. J.
Merkel
,
P.
Plocica
,
S.
Steffens
, and
B.
Rech
,
Sol. Energy Mater. Sol. Cells
119
,
112
(
2013
).
2.
S.
Varlamov
,
J.
Dore
,
R.
Evans
,
D.
Ong
,
B.
Eggleston
,
O.
Kunz
,
U.
Schubert
,
T.
Young
,
J.
Huang
,
T.
Soderstrom
,
K.
Omaki
,
K.
Kim
,
A.
Teal
,
M.
Jung
,
J.
Yun
,
Z. M.
Pakhuruddin
,
R.
Egan
,
M. A.
Green
, and
Z. M.
Pakhurruddin
,
Sol. Energy Mater. Sol. Cells
119
,
246
(
2013
).
3.
M.
Keevers
,
T.
Young
,
U.
Schuberts
, and
M.
Green
, in
Proceedings of the 22nd European Photovoltaics Solar Energy Conference Milan
, Italy (
2007
), p.
1783
.
4.
Y.
Tao
,
S.
Varlamov
,
O.
Kunz
,
Z.
Ouyang
,
J.
Wong
,
T.
Soderstrom
,
M.
Wolf
, and
R.
Egan
,
Sol. Energy Mater. Sol. Cells
101
,
186
(
2012
).
5.
P. I.
Widenborg
,
A.
Straub
, and
A. G.
Aberle
,
J. Cryst. Growth
276
,
19
(
2005
).
6.
S.
He
,
J.
Janssens
,
J.
Wong
, and
A. B.
Sproul
,
Thin Solid Films
519
,
475
(
2010
).
7.
I.
Höger
,
A.
Gawlik
,
G.
Andrä
, and
F.
Falk
,
J. Cryst. Growth
364
,
164
(
2013
).
8.
D.
van Gestel
,
I.
Gordon
,
H.
Bender
,
D.
Saurel
,
J.
Vanacken
,
G.
Beaucarne
, and
J.
Poortmans
,
J. Appl. Phys.
105
,
114507
(
2009
).
9.
T.
Sontheimer
,
A.
Schnegg
,
S.
Steffens
,
F.
Ruske
,
D.
Amkreutz
,
K.
Lips
, and
B.
Rech
,
Phys. Status Solidi (RRL)
7
,
959
(
2013
).
10.
J.
Wong
,
J. L.
Huang
,
B.
Eggleston
,
M. A.
Green
,
O.
Kunz
,
R.
Evans
,
M.
Keevers
, and
R. J.
Egan
,
J. Appl. Phys.
107
,
123705
(
2010
).
11.
J.
Wong
,
J.
Huang
,
S.
Varlamov
,
M. A.
Green
, and
M.
Keevers
,
Prog. Photovoltaics
20
,
915
(
2012
).
12.
F.
Falk
and
G.
Andrä
,
J. Cryst. Growth
287
,
397
(
2006
).
13.
J.
Plentz
,
G.
Andrä
,
A.
Gawlik
,
I.
Höger
,
G.
Jia
, and
F.
Falk
,
Thin Solid Films
562
,
430
(
2014
).
14.
G.
Schmidl
,
G.
Andrä
,
J.
Bergmann
,
A.
Gawlik
,
I.
Höger
,
S.
Anders
,
F.
Schmidl
,
V.
Tympel
, and
F.
Falk
,
J. Mater. Sci.
48
,
4177
(
2013
).
15.
D.
Amkreutz
,
J.
Müller
,
M.
Schmidt
,
T.
Hänel
, and
T. F.
Schulze
,
Prog. Photovoltaics
19
,
937
(
2011
).
16.
W.
Seifert
,
D.
Amkreutz
,
T.
Arguirov
,
H. M.
Krause
, and
M.
Schmidt
,
Solid State Phenom.
178–179
,
116
(
2011
).
17.
S.
Kühnapfel
,
N. H.
Nickel
,
S.
Gall
,
M.
Klaus
,
C.
Genzel
,
B.
Rech
, and
D.
Amkreutz
,
Thin Solid Films
576
,
68
(
2015
).
18.
T.
Pliewischkies
,
T.
Schmidt
,
I.
Höger
,
J.
Bergmann
,
A.
Gawlik
,
G.
Andrä
, and
F.
Falk
,
Phys. Status Solidi
212
,
317
(
2015
).
19.
A.
Gawlik
,
J.
Plentz
,
I.
Höger
,
G.
Andrä
,
T.
Schmidt
,
U.
Brückner
, and
F.
Falk
,
Phys. Status Solidi
212
,
162
(
2015
).
20.
G.
Jia
,
G.
Andrä
,
A.
Gawlik
,
S.
Schönherr
,
J.
Plentz
,
B.
Eisenhawer
,
T.
Pliewischkies
,
A.
Dellith
, and
F.
Falk
,
Sol. Energy Mater. Sol. Cells
126
,
62
(
2014
).
21.
D.
Amkreutz
,
J.
Haschke
,
S.
Kuhnapfel
,
P.
Sonntag
, and
B.
Rech
,
IEEE J. Photovolt.
4
,
1496
(
2014
).
22.
J.
Dore
,
S.
Varlamov
,
R.
Evans
,
B.
Eggleston
,
D.
Ong
,
O.
Kunz
,
J.
Huang
,
U.
Schubert
,
K. H.
Kim
,
R.
Egan
, and
M.
Green
,
EPJ Photovolt.
4
,
40301
(
2013
).
23.
J.
Dore
,
D.
Ong
,
S.
Varlamov
,
R.
Egan
, and
M. A.
Green
,
IEEE J. Photovolt.
4
,
33
(
2014
).
24.
I.
Höger
,
G.
Jia
,
A.
Gawlik
,
S.
Schönherr
,
T.
Pliewischkies
,
U.
Brückner
,
J.
Plentz
,
G.
Andrä
, and
F.
Falk
, in
29th European Photovoltaic Solar Energy Conference
(
2014
), pp.
1498
1501
.
25.
G.
Jia
,
I.
Höger
,
A.
Gawlik
,
J.
Dellith
,
L. R.
Bailey
,
A.
Ulyashin
, and
F.
Falk
,
Phys. Status Solidi
210
,
728
(
2013
).
26.
M.
Junghanns
,
J.
Plentz
,
G.
Andrä
,
A.
Gawlik
,
I.
Höger
, and
F.
Falk
,
Appl. Phys. Lett.
106
,
083904
(
2015
).
27.
J.
Dore
,
S.
Varlamov
, and
M. A.
Green
,
IEEE J. Photovolt.
5
,
9
(
2015
).
28.
J.
Dore
,
R.
Evans
,
B. D.
Eggleston
,
S.
Varlamov
, and
M. A.
Green
,
MRS Proc.
1426
,
63
(
2012
).
29.
D.
Amkreutz
,
J.
Haschke
,
T.
Häring
,
F.
Ruske
, and
B.
Rech
,
Sol. Energy Mater. Sol. Cells
123
,
13
(
2014
).
30.
W.
Kern
,
J. Electrochem. Soc.
137
,
1887
(
1990
).
31.
G.
Jia
,
B.
Eisenhawer
,
J.
Dellith
,
F.
Falk
,
A.
Thøgersen
, and
A.
Ulyashin
,
J. Phys. Chem. C
117
,
1091
(
2013
).
32.
R. A.
Sinton
and
A.
Cuevas
, in
16th European Photovoltaics Solar Energy Conference
(
2000
), pp.
1152
1155
.
33.
J.-P.
Charles
,
G.
Bordure
,
A.
Khoury
, and
P.
Mialhe
,
J. Phys. D: Appl. Phys.
18
,
2261
(
1985
).
34.
O.
Kunz
,
D.
Inns
,
A. B.
Sproul
, and
A. G.
Aberle
, in
21st European Photovoltaics Solar Energy Conference
(
2006
), pp.
374
377
.
35.
H.
Angermann
,
L.
Korte
,
J.
Rappich
,
E.
Conrad
,
I.
Sieber
,
M.
Schmidt
,
K.
Hübener
, and
J.
Hauschild
,
Thin Solid Films
516
,
6775
(
2008
).
36.
M.
Mews
,
T. F.
Schulze
,
N.
Mingirulli
, and
L.
Korte
,
Appl. Phys. Lett.
102
,
122106
(
2013
).
37.
G.
Aygun
,
E.
Atanassova
,
A.
Alacakir
,
L.
Ozyuzer
, and
R.
Turan
,
J. Phys. D: Appl. Phys.
37
,
1569
(
2004
).
38.
G.
Aygun
,
E.
Atanassova
,
K.
Kostov
, and
R.
Turan
,
J. Non-Cryst. Solids
352
,
3134
(
2006
).
39.
H.
Kobayashi
,
Y. L.
Liu
,
Y.
Yamashita
,
J.
Ivánčo
,
S.
Imai
, and
M.
Takahashi
,
Sol. Energy
80
,
645
(
2006
).
40.
D. C.
Gleason-Rohrer
,
B. S.
Brunschwig
, and
N. S.
Lewis
,
J. Phys. Chem. C
117
,
18031
(
2013
).
41.
F. J.
Grunthaner
,
J. Vac. Sci. Technol.
16
,
1443
(
1979
).
42.
M. H.
Hecht
,
Phys. Rev. B
43
,
12102
(
1991
).
43.
T. J.
Šarapatka
,
Surf. Sci.
275
,
443
(
1992
).
45.
A.
Namiki
,
K.
Tanimoto
,
T.
Nakamura
,
N.
Ohtake
, and
T.
Suzaki
,
Surf. Sci.
222
,
530
(
1989
).
46.
Z. H.
Lu
,
R. J.
Hussey
,
M. J.
Graham
,
R.
Cao
, and
S. P.
Tay
,
J. Vac. Sci. Technol. B
14
,
2882
(
1996
).
47.
M. D.
Wiggins
,
J. Vac. Sci. Technol.
18
,
965
(
1981
).
48.
K.
Ando
,
A.
Ishitani
, and
K.
Hamano
,
Appl. Phys. Lett.
59
,
1081
(
1991
).
49.
D.
Bolmont
,
J. L.
Bischoff
,
F.
Lutz
, and
L.
Kubler
,
Surf. Sci.
269–270
,
924
(
1992
).
50.
J.
Kim
and
H.
Yeom
,
Phys. Rev. B
67
,
035304
(
2003
).
51.
K.
Kim
,
T.-H.
Kang
,
K.
Ihm
,
C.
Jeon
,
C.-C.
Hwang
, and
B.
Kim
,
Surf. Sci.
600
,
3496
(
2006
).
52.
C.
Oünneby
and
C. G.
Pantano
,
J. Vac. Sci. Technol. A
15
,
1597
(
1997
).
53.
L.
Kubler
,
J.
Bischoff
, and
D.
Bolmont
,
Phys. Rev. B
38
,
13113
(
1988
).
54.
Y.
Yatsurugi
,
N.
Akiyama
,
Y.
Endo
, and
T.
Nozaki
,
J. Electrochem. Soc.
120
,
975
(
1973
).
55.
T.
Narushima
,
N.
Ueda
,
M.
Takeuchi
,
F.
Ishii
, and
Y.
Iguchi
,
Mater. Trans. Jim
35
,
821
(
1994
).
56.
H.
Dalaker
and
M.
Tangstad
,
Mater. Trans.
50
,
2541
(
2009
).
57.
C.
a. Deckert
,
J. Electrochem. Soc.
125
,
320
(
1978
).
58.
S. I.
Raider
,
R.
Flitsch
,
J. A.
Aboaf
, and
W. A.
Pliskin
,
J. Electrochem. Soc.
123
,
560
(
1976
).
You do not currently have access to this content.