A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

1.
J.-M.
Tarascon
and
M.
Armand
,
Nature
414
,
359
(
2001
).
2.
K. E.
Aifantis
,
S. A.
Hackney
, and
R. V.
Kumar
,
High Energy Density Lithium Batteries: Materials, Engineering, Applications
(
Wiley-VCH
,
Weinheim
,
2010
).
3.
M. S.
Whittingham
,
Proc. IEEE
100
,
1518
(
2012
).
4.
5.
A.
Mukhopadhyay
and
B. W.
Sheldon
,
Prog. Mater. Sci.
63
,
58
(
2014
).
6.
X.
Gao
,
Z.
Ma
,
W.
Jiang
,
P.
Zhang
,
Y.
Wang
,
Y.
Pan
, and
C.
Lu
,
J. Power Sources
311
,
21
(
2016
).
7.
J. R.
Szczech
and
S.
Jin
,
Energy Environ. Sci.
4
,
56
(
2011
).
8.
H.
Wu
and
Y.
Cui
,
Nano Today
7
,
414
(
2012
).
9.
M.
Ling
,
Y.
Xu
,
H.
Zhao
,
X.
Gu
,
J.
Qiu
,
S.
Li
,
M.
Wu
,
X.
Song
,
C.
Yan
, and
G.
Liu
,
Nano Energy
12
,
178
(
2015
).
10.
H.
Sitinamaluwa
,
S.
Zhang
,
W.
Senadeera
,
G.
Will
, and
C.
Yan
,
Mater. Technol.
(published online).
11.
M. T.
McDowell
,
S. W.
Lee
,
J. T.
Harris
,
B. A.
Korgel
,
C.
Wang
,
W. D.
Nix
, and
Y.
Cui
,
Nano Lett.
13
,
758
(
2013
).
12.
L. A.
Berla
,
S. W.
Lee
,
I.
Ryu
,
Y.
Cui
, and
W. D.
Nix
,
J. Power Sources
258
,
253
(
2014
).
13.
M. T.
McDowell
,
S. W.
Lee
,
W. D.
Nix
, and
Y.
Cui
,
Adv. Mater.
25
,
4966
(
2013
).
14.
J. Y.
Kwon
,
J. H.
Ryu
, and
S. M.
Oh
,
Electrochim. Acta
55
,
8051
(
2010
).
15.
L. A.
Berla
,
S. W.
Lee
,
Y.
Cui
, and
W. D.
Nix
,
J. Power Sources
273
,
41
(
2015
).
16.
Q. P.
McAllister
,
K. E.
Strawhecker
,
C. R.
Becker
, and
C. A.
Lundgren
,
J. Power Sources
257
,
380
(
2014
).
17.
A.
Kushima
,
J. Y.
Huang
, and
J.
Li
,
ACS Nano
6
,
9425
(
2012
).
18.
K.
Zhao
,
M.
Pharr
,
S.
Cai
,
J. J.
Vlassak
, and
Z.
Suo
,
J. Am. Ceram. Soc.
94
,
s226
(
2011
).
19.
V. A.
Sethuraman
,
M. J.
Chon
,
M.
Shimshak
,
V.
Srinivasan
, and
P. R.
Guduru
,
J. Power Sources
195
,
5062
(
2010
).
20.
S.
Huang
and
T.
Zhu
,
J. Power Sources
196
,
3664
(
2011
).
21.
M. K.
Chan
,
C.
Wolverton
, and
J. P.
Greeley
,
J. Am. Chem. Soc.
134
,
14362
(
2012
).
22.
K.
Zhao
,
W. L.
Wang
,
J.
Gregoire
,
M.
Pharr
,
Z.
Suo
,
J. J.
Vlassak
, and
E.
Kaxiras
,
Nano Lett.
11
,
2962
(
2011
).
23.
R. L. C.
Vink
,
G. T.
Barkema
,
W. F.
van der Weg
, and
N.
Mousseau
,
J. Non-Cryst. Solids
282
,
248
(
2001
).
24.
K.
Laaziri
,
S.
Kycia
,
S.
Roorda
,
M.
Chicoine
,
J.
Robertson
,
J.
Wang
, and
S.
Moss
,
Phys. Rev. Lett.
82
,
3460
(
1999
).
25.
A.
France-Lanord
,
E.
Blandre
,
T.
Albaret
,
S.
Merabia
,
D.
Lacroix
, and
K.
Termentzidis
,
J. Phys.: Condens. Matter
26
,
055011
(
2014
).
26.
E.
Holmström
,
B.
Haberl
,
O.
Pakarinen
,
K.
Nordlund
,
F.
Djurabekova
,
R.
Arenal
,
J.
Williams
,
J.
Bradby
,
T.
Petersen
, and
A.
Liu
,
J. Non-Cryst. Solids
438
,
26
(
2016
).
27.
X. H.
Liu
,
A. V.
Davydov
,
S. X.
Mao
,
S. T.
Picraux
,
S. L.
Zhang
,
J.
Li
,
T.
Zhu
,
J. Y.
Huang
,
J. W.
Wang
,
S.
Huang
,
F. F.
Fan
,
X.
Huang
,
Y.
Liu
,
S.
Krylyuk
,
J.
Yoo
, and
S. A.
Dayeh
,
Nat. Nanotechnol.
7
,
749
(
2012
).
28.
Z.
Xie
,
Z.
Ma
,
Y.
Wang
,
Y.
Zhou
, and
C.
Lu
,
RSC Adv.
6
,
22383
(
2016
).
29.
J. W.
Wang
,
Y.
He
,
F.
Fan
,
X. H.
Liu
,
S.
Xia
,
Y.
Liu
,
C. T.
Harris
,
H.
Li
,
J. Y.
Huang
,
S. X.
Mao
, and
T.
Zhu
,
Nano Lett.
13
,
709
(
2013
).
30.
H.
Liao
,
K.
Karki
,
Y.
Zhang
,
J.
Cumings
, and
Y.
Wang
,
Adv. Mater.
23
,
4318
(
2011
).
31.
H.
Ghassemi
,
M.
Au
,
N.
Chen
,
P. A.
Heiden
, and
R. S.
Yassar
,
ACS Nano
5
,
7805
(
2011
).
32.
G. A.
Tritsaris
,
K.
Zhao
,
O. U.
Okeke
, and
E.
Kaxiras
,
J. Phys. Chem. C
116
,
22212
(
2012
).
33.
F. F.
Fan
,
S.
Huang
,
H.
Yang
,
M.
Raju
,
D.
Datta
,
V. B.
Shenoy
,
A. C. T.
van Duin
,
S. L.
Zhang
, and
T.
Zhu
,
Modell. Simul. Mater. Sci. Eng.
21
,
074002
(
2013
).
34.
Z.
Cui
,
Z.
Cui
,
F.
Gao
, and
J.
Qu
,
J. Power Sources
207
,
150
(
2012
).
35.
V. A.
Sethuraman
,
M. J.
Chon
,
M.
Shimshak
,
N.
Van Winkle
, and
P. R.
Guduru
,
Electrochem. Commun.
12
,
1614
(
2010
).
36.
D. H.
Tsai
,
J. Chem. Phys.
70
,
1375
(
1979
).
37.
M.
Zhou
,
Proc. R. Soc. London, Ser. A
459
,
2347
(
2003
).
38.
I.
Ryu
,
J. W.
Choi
,
Y.
Cui
, and
W. D.
Nix
,
J. Mech. Phys. Solids
59
,
1717
(
2011
).
39.
M.
Wang
,
C.
Yan
,
L.
Ma
, and
N.
Hu
,
Comput. Mater. Sci.
68
,
138
(
2013
).
40.
M.
Wang
,
C.
Yan
,
L.
Ma
,
N.
Hu
, and
M.
Chen
,
Comput. Mater. Sci.
54
,
236
(
2012
).
41.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
42.
M. C.
Wang
,
C.
Yan
,
L.
Ma
,
N.
Hu
, and
G. P.
Zhang
,
Comput. Mater. Sci.
75
,
69
(
2013
).
43.
M. C.
Wang
,
C.
Yan
,
D.
Galpaya
,
Z. B.
Lai
,
L.
Ma
,
N.
Hu
,
Q.
Yuan
,
R. X.
Bai
, and
L. M.
Zhou
,
J. Nano Res.
23
,
43
(
2013
).
44.
Y.
Xu
,
M.
Wang
,
N.
Hu
,
J.
Bell
, and
C.
Yan
,
RSC Adv.
6
,
28121
(
2016
).
45.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
46.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
47.
H.
Kim
,
C.-Y.
Chou
,
J. G.
Ekerdt
, and
G. S.
Hwang
,
J. Phys. Chem. C
115
,
2514
(
2011
).
48.
Y.-H.
Yeh
,
H.
Nakashima
,
H.
Kurishita
,
S.
Goto
, and
H.
Yoshinaga
,
Mater. Trans., JIM
31
,
284
(
1990
).
You do not currently have access to this content.