Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contact behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.

1.
Y. C.
Lin
and
J.
Zhong
, “
A review of the influencing factors on anisotropic conductive adhesives joining technology in electrical applications
,”
J. Mater. Sci.
43
(
9
),
3072
3093
(
2008
).
2.
Y.
Li
and
C. P.
Wong
, “
Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications
,”
Mater. Sci. Eng. R
51
(
1–3
),
1
35
(
2006
).
3.
Y.
Chan
and
D.
Luk
, “
Effects of bonding parameters on the reliability performance of anisotropic conductive adhesive interconnects for flip-chip-on-flex packages assembly II. Different bonding pressure
,”
Microelectron. Reliab.
42
(
8
),
1195
1204
(
2002
).
4.
Z. L.
Zhang
,
H.
Kristiansen
, and
J.
Liu
, “
A method for determining elastic properties of micron-sized polymer particles by using flat punch test
,”
Comput. Mater. Sci.
39
(
2
),
305
314
(
2007
).
5.
J.
Wu
,
S.
Nagao
,
Z.
Zhang
, and
J.
He
, “
Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study
,”
Eng. Fract. Mech.
150
,
209
221
(
2015
).
6.
J.
Paul
,
S.
Romeis
,
J.
Tomas
, and
W.
Peukert
, “
A review of models for single particle compression and their application to silica microspheres
,”
Adv. Powder Technol.
25
(
1
),
136
153
(
2014
).
7.
J. Y.
He
,
Z. L.
Zhang
, and
H.
Kristiansen
, “
Nanomechanical characterization of single micron-size polymer particles
,”
J. Appl. Polym. Sci.
113
(
3
),
1398
1405
(
2009
).
8.
J. Y.
He
,
Z. L.
Zhang
,
M.
Midttun
,
G.
Fonnum
,
G. I.
Modahl
,
H.
Kristiansen
, and
K.
Redford
, “
Size effect on mechanical properties of micron-sized PS–DVB polymer particles
,”
Polymer
49
(
18
),
3993
3999
(
2008
).
9.
J. Y.
He
,
Z. L.
Zhang
,
H.
Kristiansen
,
K.
Redford
,
G.
Fonnum
, and
G. I.
Modahl
, “
Crosslinking effect on the deformation and fracture of monodisperse polystyrene-co-divinylbenzene particles
,”
Express Polym. Lett.
7
(
4
),
365
374
(
2013
).
10.
J. Y.
He
,
S.
Nagao
,
H.
Kristiansen
, and
Z. L.
Zhang
, “
Loading rate effects on the fracture of Ni/Au nano-coated acrylic particles
,”
Express Polym. Lett.
6
(
3
),
198
203
(
2012
).
11.
J. Y.
He
,
T.
Helland
,
Z. L.
Zhang
, and
H.
Kristiansen
, “
Fracture of micrometre-sized Ni/Au coated polymer particles
,”
J. Phys. D: Appl. Phys.
42
(
8
),
085405
(
2009
).
12.
R. S.
Timsit
, “
Electrical contact resistance: Fundamental principles
,” in
Electrical Contacts: Principles and Applications
, edited by
P. G.
Slade
(
CRC Press
,
2014
), pp.
3
111
.
13.
J. H.
Constable
, “
Analysis of ACF contact resistance
,” in
IPACK03
,
2003
, pp.
1
8
.
14.
J. A.
Greenwood
, “
Constriction resistance and the real area of contact
,”
Br. J. Appl. Phys.
17
(
12
),
1621
1632
(
1966
).
15.
R. S.
Timsit
, “
Constriction resistance of thin film contacts
,”
IEEE Trans. Compon. Packag. Technol.
33
(
3
),
636
642
(
2010
).
16.
J.
Määttänen
, “
Contact resistance of metal-coated polymer particles used in anisotropically conductive adhesives
,”
Soldering Surf. MountTechnol.
15
(
1
),
12
15
(
2003
).
17.
M.
Chin
,
K. A.
Iyer
, and
S. J.
Hu
, “
Prediction of electrical contact resistance for anisotropic conductive adhesive assemblies
,”
IEEE Trans. Compon. Packag. Technol.
27
(
2
),
317
326
(
2004
).
18.
M. J.
Yim
and
K. W.
Paik
, “
The contact resistance and reliability of anisotropically conductive film (ACF)
,”
IEEE Trans. Adv. Packag.
22
(
2
),
166
173
(
1999
).
19.
M. A.
Uddin
,
M. O.
Alam
,
Y. C.
Chan
, and
H. P.
Chan
, “
Adhesion strength and contact resistance of flip chip on flex packages—effect of curing degree of anisotropic conductive film
,”
Microelectron. Reliab.
44
(
3
),
505
514
(
2004
).
20.
C. K.
Chung
and
K. W.
Paik
, “
Effects of the degree of cure on the electrical and mechanical behavior of anisotropic conductive films
,”
J. Electron. Mater.
39
(
4
),
410
418
(
2010
).
21.
C. K.
Chung
,
G. D.
Sim
,
S. B.
Lee
, and
K. W.
Paik
, “
Effects of conductive particles on the electrical stability and reliability of anisotropic conductive film chip-on-board interconnections
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
2
(
3
),
359
366
(
2012
).
22.
G.
Dou
,
D.
Whalley
, and
C.
Liu
, “
Mechanical and electrical characterisation of individual ACA conductor particles
,” in
2006 International Conference on Electronic Materials and Packaging
(
2006
), pp.
1
9
.
23.
C.
Shih
,
K.
Chen
, and
H.
Li
, “
Mechanical and electrical properties investigation of micro-size single metal-coated polymer particle
,” in
ICEP-IAAC 2015 Proceedings
(
2015
), pp.
527
531
.
24.
J.
Ugelstad
,
A.
Berge
,
T.
Ellingsen
,
R.
Schmid
,
T.-N.
Nilsen
,
P. C.
Mørk
,
P.
Stenstad
,
E.
Hornes
, and
Ø.
Olsvik
, “
Preparation and application of new monosized polymer particles
,”
Prog. Polym. Sci.
17
(
1
),
87
161
(
1992
).
25.
R.
Nowak
,
D.
Chrobak
,
S.
Nagao
,
D.
Vodnick
,
M.
Berg
,
A.
Tukiainen
, and
M.
Pessa
, “
An electric current spike linked to nanoscale plasticity
,”
Nat. Nanotechnol.
4
(
5
),
287
291
(
2009
).
26.
W.
Zhang
,
S. H.
Brongersma
,
O.
Richard
,
B.
Brijs
,
R.
Palmans
,
L.
Froyen
, and
K.
Maex
, “
Influence of the electron mean free path on the resistivity of thin metal films
,”
Microelectron. Eng.
76
(
1–4
),
146
152
(
2004
).
27.
D. C.
Larson
and
B. T.
Boiko
, “
Electrical resistivity of thin epitaxially grown silver films
,”
Appl. Phys. Lett.
5
(
8
),
155
156
(
1964
).
You do not currently have access to this content.