Using density functional theory plus self-consistent Hubbard U (DFT + Usc) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO3 (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO3 with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (dCo–O), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (ΔCF) and band gap energy (Eg). Agreement with experiment for the latter improves considerably with the use of DFT + Usc and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO3 where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.
Skip Nav Destination
Article navigation
28 June 2016
Research Article|
June 27 2016
First-principles study of crystal and electronic structure of rare-earth cobaltites
M. Topsakal;
M. Topsakal
Department of Chemical Engineering and Materials Science,
University of Minnesota
, Minneapolis, Minnesota 55455, USA
Search for other works by this author on:
C. Leighton;
C. Leighton
Department of Chemical Engineering and Materials Science,
University of Minnesota
, Minneapolis, Minnesota 55455, USA
Search for other works by this author on:
R. M. Wentzcovitch
R. M. Wentzcovitch
Department of Chemical Engineering and Materials Science,
University of Minnesota
, Minneapolis, Minnesota 55455, USA
Search for other works by this author on:
J. Appl. Phys. 119, 244310 (2016)
Article history
Received:
April 25 2016
Accepted:
June 13 2016
Citation
M. Topsakal, C. Leighton, R. M. Wentzcovitch; First-principles study of crystal and electronic structure of rare-earth cobaltites. J. Appl. Phys. 28 June 2016; 119 (24): 244310. https://doi.org/10.1063/1.4954792
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
The effect of temperature and pressure on the spin state of cobalt ions in La1−xPrxCoO3 compounds
Low Temp. Phys. (June 2020)
Studies on Rare Earth Cobaltites, La 1− x Sr x CoO 3 and Related Systems
AIP Conference Proceedings (March 1974)
Calculation of effective Coulomb interaction in PrCoO3
AIP Conference Proceedings (April 2018)
Specific heat of new perovskite-type cobaltates Pr1-xNdxCoO3
AIP Conference Proceedings (May 2016)
Giant reversible magnetocaloric effect in antiferromagnetic rare-earth cobaltite GdCoO3
J. Appl. Phys. (January 2020)