We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω−1 m−1 and 2100 W m−1 K−1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
2.
K. I.
Bolotina
,
K. J.
Sikesb
,
Z.
Jianga
,
M.
Klimac
,
G.
Fudenberga
,
J.
Honec
,
P.
Kima
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
,
351
355
(
2008
).
3.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,”
Nat. Mater.
6
,
183
191
(
2007
).
4.
A. A.
Balandin
, “
Thermal properties of graphene and nanostructured carbon materials
,”
Nat. Mater.
10
,
569
581
(
2011
).
5.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
, “
Two-dimensional atomic crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10451
10453
(
2005
).
6.
A. A.
Balandin
,
S.
Ghosh
,
W. Z.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
, “
Superior thermal conductivity of single-layer graphene
,”
Nano Lett.
8
,
902
907
(
2008
).
7.
J. H.
Seol
,
I.
Jo
,
A. L.
Moore
,
L.
Lindsay
,
Z. H.
Aitken
,
M. T.
Pettes
,
X. S.
Li
,
Z.
Yao
,
R.
Huang
,
D.
Broido
,
N.
Mingo
,
R. S.
Ruoff
, and
L.
Shi
, “
Two-dimensional phonon transport in supported graphene
,”
Science
328
,
213
216
(
2010
).
8.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
, “
Dimensional crossover of thermal transport in few-layer graphene
,”
Nat. Mater.
9
,
555
558
(
2010
).
9.
M. T.
Pettes
,
I.
Jo
,
Z.
Yao
, and
L.
Shi
, “
Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene
,”
Nano Lett.
11
,
1195
1200
(
2011
).
10.
Z.
Wang
,
R.
Xie
,
C. T.
Bui
,
D.
Liu
,
X.
Ni
,
B.
Li
, and
J. T. L.
Thong
, “
Thermal transport in suspended and supported few-layer graphene
,”
Nano Lett.
11
,
113
118
(
2011
).
11.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
, “
Fine structure constant defines visual transparency of graphene
,”
Science
320
,
1308
(
2008
).
12.
W.
Jang
,
W.
Bao
,
L.
Jing
,
C. N.
Lau
, and
C.
Dames
, “
Thermal conductivity of suspended few-layer graphene by a modified T-bridge method
,”
Appl. Phys. Lett.
103
,
133102
(
2013
).
13.
V. E.
Dorgan
,
A.
Behnam
,
H. J.
Conley
,
K. I.
Bolotin
, and
E.
Pop
, “
High-field electrical and thermal transport in suspended graphene
,”
Nano Lett.
13
,
4581
4586
(
2013
).
14.
X. F.
Xu
,
L. F. C.
Pereira
,
Y.
Wang
,
J.
Wu
,
K. W.
Zhang
,
X. M.
Zhao
,
S. K.
Bae
,
C. T.
Bui
,
R. G.
Xie
,
J. T. L.
Thong
,
B. H.
Hong
,
K. P.
Loh
,
D.
Donadio
,
B. W.
Li
, and
B.
Ozyilmaz
, “
Length-dependent thermal conductivity in suspended single-layer graphene
,”
Nat. Commun.
5
,
3689
3694
(
2014
).
15.
V.
Singh
and
M. M.
Deshmukh
, “
Nanoelectromechanics using graphene
,”
Curr. Sci.
107
,
437
446
(
2014
).
16.
J.
Velasco
, Jr.
,
Z.
Zhao
,
H.
Zhang
,
F. L.
Wang
,
Z. Y.
Wang
,
P.
Kratz
,
L.
Jing
,
W. Z.
Bao
,
J.
Shi
, and
C. N.
Lau
, “
Suspension and measurement of graphene and Bi2Se3 atomic membranes
,”
Nanotechnology
22
,
285305
(
2011
).
17.
C. Y.
Chen
,
S.
Rosenblatt
,
K. I.
Bolotin
,
W.
Kalb
,
P.
Kim
,
I.
Kymissis
,
H. L.
Stormer
,
T. F.
Heinz
, and
J.
Hone
, “
Performance of monolayer graphene nanomechanical resonators with electrical readout
,”
Nat. Nanotechnol.
4
,
861
867
(
2009
).
18.
V.
Patil
,
A.
Capon
,
S.
Strauf
, and
E. H.
Yang
, “
Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors
,”
Sci. Rep.
3
,
02791
(
2013
).
19.
H. D.
Wang
,
K.
Kurata
,
T.
Fukunaga
,
H.
Takamatsu
,
X.
Zhang
,
T.
Ikuta
,
K.
Takahashi
,
T.
Nishiyama
,
H.
Ago
, and
Y.
Takata
, “
A simple method for fabricating free-standing large area fluorinated single-layer graphene with size-tunable nanopores
,”
Carbon
99
,
564
570
(
2016
).
20.
Y. K.
Koh
,
M. H.
Bae
,
D. G.
Cahill
, and
E.
Pop
, “
Heat conduction across monolayer and few-layer graphenes
,”
Nano Lett.
10
,
4363
4368
(
2010
).
21.
H. D.
Wang
,
K.
Kurata
,
T.
Fukunaga
,
H.
Takamatsu
,
X.
Zhang
,
T.
Ikuta
,
K.
Takahashi
,
T.
Nishiyama
,
H.
Ago
, and
Y.
Takata
, “
In-situ measurement of the heat transport in defect-engineered free-standing single-layer graphene
,”
Sci. Rep.
6
,
21823
(
2016
).
22.
A.
Mavrokefalos
,
M. T.
Pettes
,
F.
Zhou
, and
L.
Shi
, “
Four-probe measurements of the in-plane thermoelectric properties of nanofilms
,”
Rev. Sci. Instrum.
78
,
034901
(
2007
).
23.
W. W.
Cai
,
A. L.
Moore
,
Y. W.
Zhu
,
X. S.
Li
,
S. S.
Chen
,
L.
Shi
, and
R. S.
Ruoff
, “
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
,”
Nano Lett.
10
,
1645
1651
(
2010
).
24.
S. S.
Chen
,
Q. Z.
Wu
,
C.
Mishra
,
J. Y.
Kang
,
H. J.
Zhang
,
K.
Cho
,
W. W.
Cai
,
A. A.
Balandin
, and
R. S.
Ruoff
, “
Thermal conductivity of isotopically modified graphene
,”
Nat. Mater.
11
,
203
207
(
2012
).
25.
D. L.
Nika
and
A. A.
Balandin
, “
Two-dimensional phonon transport in graphene
,”
J. Phys.: Condens. Matter
24
,
233203
(
2012
).

Supplementary Material

You do not currently have access to this content.