The analyses of the electronic properties of a Single-Wall Carbon Nanotube (SWCN) under both uniaxial and torsional strains are presented with the main intrinsic curvature taken into account. Within tight-binding mechanism, Heyd and Charlier method is extended to cover chiral types of SWCNs using a single πorbital model for the nanotubes. The variations of the bond lengths and the band gap as functions of chirality and the strain parameters of carbon nanotube are discussed. An improved analytical expression for the deformed geometrical structure of a SWCN with arbitrary chiral indices has been derived, and a numerical band gap analysis of a chiral type is conducted. The existence of an interference or cooperative effect between uniaxial and torsional strains on band gap of a SWCN is found. The results of our calculations show that the cooperative effects depend strongly on the chirality of SWCNs and the strain parameters, so that, in contrast to the other works, there exists some strain parameters for which the cooperative effects are not found in the armchair SWCNs. In addition, it was found that the strain parameters can be chosen to correspond to the cooperative effects in zigzag SWCNs.

1.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
R.
Saito
,
Carbon
33
(
7
),
883
891
(
1995
).
2.
J. W.
Ding
,
X. H.
Yan
, and
J. X.
Cao
,
Phys. Rev. B
66
,
073401
(
2002
).
3.
Y.
Zhang
and
M.
Hann
,
Phys. E
43
,
1774
1778
(
2011
).
4.
R.
Moussaddar
,
A.
Charlier
,
E.
McRae
,
R.
Heyd
, and
M. F.
Charlier
,
Synthetic Metals
89
(2),
81
86
(
1997
).
5.
J.-M.
Zhang
,
R.-L.
Liang
, and
K.-W.
Xu
,
Phys. B
405
,
1329
1334
(
2010
).
6.
W.
Ding
,
X. H.
Yan
,
J. X.
Cao
,
D. L.
Wang
,
Y.
Tang
, and
Q. B.
Yang
,
J. Phys.: Condens. Matter
15
,
L439
L445
(
2003
).
7.
R.
Heyd
,
A.
Charlier
,
E.
McRae
, and
M.-F.
Charlier
,
Phys. Rev. B
56
,
9958
9963
(
1997
).
8.
A.
Kleiner
and
S.
Eggert
,
Phys. Rev. B
63
,
073408
(
2001
).
9.
L.
Yang
,
M. P.
Anantram
,
J.
Han
, and
J. P.
Lu
,
Phys. Rev. B
60
,
13874
13878
(
1999
).
10.
A.
Pullen
,
G. L.
Zhao
,
D.
Bagayoko
, and
L.
Yang
,
Phys. Rev. B
71
,
205410
(
2005
).
11.
R.
Heyd
,
A.
Charlier
, and
E.
McRae
,
Phys. Rev. B
55
,
6820
6824
(
1997
).
12.
A.
Charlier
,
E.
McRAe
,
R.
Heyd
, and
M. F.
Charlier
,
J. Phys. Chem. Solids
62
,
439
444
(
2001
).
13.
D.
Jian-Wen
,
Y.
Xiao-Hong
,
L.
Chao-Ping
, and
T.
Na-Si
,
Chin. Phys. Lett.
21
(
4
),
704
(
2004
).
14.
Y.
Yoon
and
J.
Guo
,
IEEE Trans. Electron Devices
54
(
6
),
1280
(
2007
).
15.
N.
Nair
,
W.-J.
Kim
,
R. D.
Braatz
, and
M. S.
Strano
,
Langmuir
24
(5),
1790
1795
(
2008
).
16.
D. A.
Heller
,
H.
Jin
,
B. M.
Martinez
,
D.
Patel
,
B. M.
Miller
,
T.-K.
Yeung
,
P. V.
Jena
,
C.
Höbartner
,
T.
Ha
,
S. K.
Silverman
, and
M. S.
Strano
,
Nat. Nanotechnol.
4
,
114
120
(
2009
).
17.
D. J.
Bindl
and
M. S.
Arnold
,
J. Phys. Chem. C
117
(
5
),
2390
2395
(
2013
).
18.
Y.
Zakharko
,
A.
Graf
,
S. P.
Schießl
,
B.
Hähnlein
,
J.
Pezoldt
,
M. C.
Gather
, and
J.
Zaumseil
,
Nano Lett.
16
(
5
),
3278
3284
(
2016
).
19.
S.
Schäfer
,
N. M. B.
Cogan
, and
T. D.
Krauss
,
Nano Lett.
14
(
6
),
3138
3144
(
2014
).
20.
L.
Hong
,
S.
Mouri
,
Y.
Miyauchi
,
K.
Matsuda
, and
N.
Nakashima
,
Nanoscale
6
,
12798
12804
(
2014
).
21.
L.
Lüer
,
S.
Hoseinkhani
,
D.
Polli
,
J.
Crochet
,
T.
Hertel
, and
G.
Lanzani
,
Nat. Phys.
5
,
54
58
(
2009
).
22.
C. J. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
78
,
1932
(
1997
).
You do not currently have access to this content.