We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gap pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.

1.
A.
Mang
,
K.
Reimann
, and
St.
Rübenacke
,
Solid State Commun.
94
,
251
254
(
1995
).
2.
T.
Guillet
,
M.
Mexis
,
J.
Levrat
,
G.
Rossbach
,
C.
Brimont
,
T.
Bretagnon
,
B.
Gil
,
R.
Butté
,
N.
Grandjean
,
L.
Orosz
,
F.
Réveret
,
J.
Leymarie
,
J.
Zúñiga-Pérez
,
M.
Leroux
,
F.
Semond
, and
S.
Bouchoule
,
Appl. Phys. Lett.
99
,
161104
(
2011
).
3.
D.
Ehrentraut
,
H.
Sato
,
Y.
Kagamitani
,
H.
Sato
,
A.
Yoshikawa
, and
T.
Fukuda
,
Prog. Cryst. Growth Charact. Mater.
52
,
280
(
2006
).
4.
C.
Bundesmann
,
A.
Rahm
,
M.
Lorenz
,
M.
Grundmann
, and
M.
Schubert
,
J. Appl. Phys.
99
,
113504
(
2006
).
5.
K.
Shimada
,
N.
Takahashi
,
Y.
Nakagawa
,
T.
Hiramatsu
, and
H.
Kato
,
Phys. Rev. B
88
,
075203
(
2013
).
6.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S. J.
Cho
, and
H.
Morkoç
,
J. Appl. Phys.
98
,
041301
(
2005
).
7.
P.
Perlin
,
C.
Jauberthie-Carillon
,
J. P.
Itie
,
A.
San Miguel
,
I.
Grzegory
, and
A.
Polian
,
Phys. Rev. B
45
,
83
89
(
1992
).
8.
S. H.
Jang
and
S. F.
Chichibu
,
J. Appl. Phys.
112
,
073503
(
2012
).
9.
P.
Gopal
and
N. A.
Spaldin
,
J. Electron. Mater.
35
,
538
542
(
2006
).
10.
R.
André
,
J.
Cibert
,
L. S.
Dang
,
J.
Zeman
, and
M.
Zigone
,
Phys. Rev. B
53
,
6951
6954
(
1996
).
11.
P.
Perlin
,
V.
Iota
,
B. A.
Weinstein
,
P.
Wisniewski
,
T.
Suski
,
P. G.
Eliseev
, and
M.
Osinski
,
Appl. Phys. Lett.
70
,
2993
2995
(
1997
).
12.
G.
Vaschenko
,
D.
Patel
,
C. S.
Menoni
,
S.
Keller
,
U. K.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
78
,
640
642
(
2001
).
13.
H.
Teisseyre
,
A.
Kamińska
,
G.
Franssen
,
A.
Dussaigne
,
N.
Grandjean
,
I.
Grzegory
,
B.
Łucznik
, and
T.
Suski
,
J. Appl. Phys.
105
,
063104
(
2009
).
14.
G.
Vaschenko
,
C. S.
Menoni
,
D.
Patel
,
C. N.
Tomé
,
B.
Clausen
,
N. F.
Gardner
,
J.
Sun
,
W.
Götz
,
H. M.
Ng
, and
A. Y.
Cho
,
Phys. Status Solidi B
235
,
238
247
(
2003
).
15.
T.
Suski
,
S. P.
Łepkowski
,
G.
Staszczak
,
R.
Czernecki
,
P.
Perlin
, and
W.
Bardyszewski
,
J. Appl. Phys.
112
,
053509
(
2012
).
16.
P.
Fons
,
K.
Iwata
,
A.
Yamada
,
K.
Matsubara
,
S.
Niki
,
K.
Nakahara
,
T.
Tanabe
, and
H.
Takasu
,
Appl. Phys. Lett.
77
,
1801
(
2000
).
17.
D.
Doppalapudi
,
E.
Iliopoulos
,
S. N.
Basu
, and
T. D.
Moustakas
,
J. Appl. Phys.
85
,
3582
3589
(
1999
).
18.
B.
Laumer
,
F.
Schuster
,
M.
Stutzmann
,
A.
Bergmaier
,
G.
Dollinger
, and
M.
Eickhoff
,
J. Appl. Phys.
113
,
233512
(
2013
).
19.
A.
Dużynska
,
R.
Hrubiak
,
V.
Drozd
,
H.
Teisseyre
,
W.
Paszkowicz
,
A.
Reszka
,
A.
Kaminska
,
S.
Saxena
,
J. D.
Fidelus
,
J.
Grabis
,
C. J.
Monty
, and
A.
Suchocki
,
High Pressure Res.
32
,
354
363
(
2012
).
20.
T.
Bretagnon
,
P.
Lefebvre
,
T.
Guillet
,
T.
Taliercio
,
B.
Gil
, and
C.
Morhaine
,
Appl. Phys. Lett.
90
,
201912
(
2007
).
21.
C.
Morhain
,
T.
Bretagnon
,
P.
Lefebvre
,
X.
Tang
,
P.
Valvin
,
T.
Guillet
,
B.
Gil
,
T.
Taliercio
,
M.
Teisseire-Doninelli
,
B.
Vinter
, and
C.
Deparis
,
Phys. Rev. B
72
,
241305R
(
2005
).
22.
B.
Laumer
,
T. A.
Wassner
,
F.
Schuster
,
M.
Stutzmann
,
J.
Schörmann
,
M.
Rohnke
,
Al.
Chernikov
,
V.
Bornwasser
,
M.
Koch
,
S.
Chatterjee
, and
M.
Eickhoff
,
J. Appl. Phys.
110
,
093513
(
2011
).
23.
M.
Stölzel
,
A.
Müller
,
G.
Benndorf
,
M.
Lorenz
,
Ch.
Patzig
,
Th.
Höche
, and
M.
Grundmann
,
Appl. Phys. Lett.
104
,
192102
(
2014
).
24.
M.
Stölzel
,
A.
Müller
,
G.
Benndorf
,
M.
Brandt
,
M.
Lorenz
, and
M.
Grundmann
,
Phys. Rev. B
88
,
045315
(
2013
).
25.
J.
Puls
,
S.
Sadofev
,
P.
Schafer
, and
F.
Henneberger
,
Phys. Rev. B
89
,
081301(R)
(
2014
).
26.
S.
Park
and
D.
Ahn
,
Appl. Phys. Lett.
87
,
253509
(
2005
).
27.
See http://www.crystran.co.uk/optical-materials/sapphire-al2o3 for Crystan Ltd. Sapphire (Al2O3) data sheet (last accessed September 22,
2015
).
28.
J. H.
Gieske
and
G. R.
Barsch
,
Phys. Status Solidi B
29
,
121
131
(
1968
).
29.
K.
Sarasamak
,
S.
Limpijumnong
, and
W. R. L.
Lambrecht
,
Phys. Rev. B
82
,
035201
(
2010
).
30.
S. L.
Chuang
,
Physics of Optoelectronic Devices
(
John Wiley & Son
,
New York
,
1995
), p.
562
.
31.
W.
Bardyszewski
,
S. P.
Łepkowski
, and
H.
Teisseyre
,
Acta Phys. Pol., A
119
,
663
665
(
2011
).
32.
S.
Birner
,
T.
Zibold
,
T.
Andlauer
,
T.
Kubis
,
M.
Sabathil
,
A.
Trellakis
, and
P.
Vogl
,
IEEE Trans. Electron Devices
54
,
2137
2142
(
2007
).
33.
A.
Dal Corso
,
M.
Posternak
,
R.
Resta
, and
A.
Baldereschi
,
Phys. Rev. B
50
,
10715
10721
(
1994
).
34.
J. S.
Reparaz
,
L. R.
Muniz
,
M. R.
Wagner
,
A. R.
Goñi
,
M. I.
Alonso
,
A.
Hoffmann
, and
B. K.
Meyer
,
Appl. Phys. Lett.
96
,
231906
(
2010
).
You do not currently have access to this content.