We report the thermoelectric properties of polycrystalline samples of Ca3Pb1−xBixO (x = 0, 0.1, 0.2) and Ca3SnO, both crystallizing in a cubic antiperovskite-type structure. The Ca3SnO sample shows metallic resistivity and its thermoelectric power approaches 100 μV K−1 at room temperature, resulting in the thermoelectric power factor of Ca3SnO being larger than that of Ca3Pb1−xBixO. On the basis of Hall and Sommerfeld coefficients, the Ca3SnO sample is found to be a p-type metal with a carrier density of ∼1019 cm−3, a mobility of ∼80 cm2 V−1 s−1, both comparable to those in degenerated semiconductors, and a moderately large hole carrier effective mass. The coexistence of moderately high mobility and large effective mass observed in Ca3SnO, as well as possible emergence of a multivalley electronic structure with a small band gap at low-symmetry points in k-space, suggests that the antiperovskite Ca oxides have strong potential as a thermoelectric material.

1.
G. D.
Mahan
,
Solid State Physics
(
Academic Press
,
New York, USA
,
1997
), Vol.
51
, pp.
81
157
.
2.
D.-Y.
Chung
,
T.
Hogan
,
P.
Brazis
,
M.
Rocci-Lane
,
C.
Kannewurf
,
M.
Bastea
,
C.
Uher
, and
M. G.
Kanatzidis
,
Science
287
,
1024
(
2000
).
3.
P.
Larson
,
S. D.
Mahanti
,
D.-Y.
Chung
, and
M. G.
Kanatzidis
,
Phys. Rev. B
65
,
045205
(
2002
).
4.
K.
Kuroki
and
R.
Arita
,
J. Phys. Soc. Jpn.
76
,
083707
(
2007
).
5.
H.
Usui
,
K.
Suzuki
,
K.
Kuroki
,
S.
Nakano
,
K.
Kudo
, and
M.
Nohara
,
Phys. Rev. B
88
,
075140
(
2013
).
6.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
,
66
(
2011
).
7.
W.
Liu
,
X.
Tan
,
K.
Yin
,
H.
Liu
,
X.
Tang
,
J.
Shi
,
Q.
Zhang
, and
C.
Uher
,
Phys. Rev. Lett.
108
,
166601
(
2012
).
8.
W.
Koshibae
,
K.
Tsutsui
, and
S.
Maekawa
,
Phys. Rev. B
62
,
6869
(
2000
).
9.
W.
Koshibae
and
S.
Maekawa
,
Phys. Rev. Lett.
87
,
236603
(
2001
).
10.
A.
Widera
and
H.
Schäfer
,
Mater. Res. Bull.
15
,
1805
(
1980
).
11.
J.
Nuss
,
C.
Mühle
,
K.
Hayama
,
V.
Abdolazimi
, and
H.
Takagi
,
Acta Cryst. B
71
,
300
(
2015
).
12.
T.
Kariyado
and
M.
Ogata
,
J. Phys. Soc. Jpn.
80
,
083704
(
2011
).
13.
T.
Kariyado
and
M.
Ogata
,
J. Phys. Soc. Jpn.
81
,
064701
(
2012
).
14.
T.
Kariyado
, Ph.D. thesis,
University of Tokyo
,
2012
.
15.
T. H.
Hsieh
,
J.
Liu
, and
L.
Fu
,
Phys. Rev. B
90
,
081112
(
2014
).
16.
N.
Tajima
,
M.
Tamura
,
Y.
Nishio
,
K.
Kajita
, and
Y.
Iye
,
J. Phys. Soc. Jpn.
69
,
543
(
2000
).
17.
T.
Liang
,
Q.
Gibson
,
M. N.
Ali
,
M.
Liu
,
R. J.
Cava
, and
N. P.
Ong
,
Nat. Mater.
14
,
280
(
2015
).
18.
H.
Hayama
,
A. W.
Rost
,
J.
Nuss
,
C.
Mühle
, and
H.
Takagi
, paper presented at the
69th JPS Annual Meeting
(
2014
), 29pCG-11.
19.
A.
Velden
and
M.
Jansen
,
Z. Anorg. Allg. Chem.
630
,
234
(
2004
).
20.
S.
Xia
and
S.
Bobev
,
J. Alloys Compd.
427
,
67
(
2007
).
21.
I.
Terasaki
,
Y.
Sasago
, and
K.
Uchinokura
,
Phys. Rev. B
56
,
12685
(
1997
).
22.
T.
Okuda
,
K.
Nakanishi
,
S.
Miyasaka
, and
Y.
Tokura
,
Phys. Rev. B
63
,
113104
(
2001
).
23.
G. D.
Mahan
,
J. Appl. Phys.
65
,
1578
(
1989
).
You do not currently have access to this content.