In this study, we designed and built a prototype of a cascade thermoacoustic amplifier that connects multiple regenerators while satisfying high acoustic impedance at all regenerator positions. To connect the regenerators, the transfer matrix for each component unit, consisting of a regenerator and the adjacent resonators, was analyzed and the eigenvector and the eigenvalue were numerically determined. The experimental results showed that an acoustic power amplification higher than 100 was achieved by the cascade connection of eight regenerators. Furthermore, a high acoustic impedance of approximately six times higher than that of a free-traveling plane wave was realized at all regenerator positions.

1.
P. H.
Ceperley
, “
A pistonless Stirling engine—The traveling wave heat engine
,”
J. Acoust. Soc. Am.
66
,
1508
(
1979
).
2.
I.
Urieli
and
D. M.
Berchowitz
,
Stirling Cycle Engine Analysis
(
Hilger
,
Bristol, United Kingdom
,
1984
).
3.
T.
Yazaki
,
A.
Iwata
,
T.
Maekawa
, and
A.
Tominaga
, “
Traveling wave thermoacoustic engine in a looped tube
,”
Phys. Rev. Lett.
81
,
3128
(
1998
).
4.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic Stirling heat engine
,”
Nature (London)
399
,
335
(
1999
).
5.
M. E. H.
Tijani
and
S.
Spoelstra
, “
A high performance thermoacoustic engine
,”
J. Appl. Phys.
110
,
093519
(
2011
).
6.
T.
Yazaki
,
T.
Biwa
, and
A.
Tominaga
, “
A pistonless Stirling cooler
,”
Appl. Phys. Lett.
80
,
157
(
2002
).
7.
B.
Yu
,
E. C.
Luo
,
S. F.
Li
,
W.
Dai
, and
Z. H.
Wu
, “
Experimental study of a thermoacoustically-driven traveling wave thermoacoustic refrigerator
,”
Cryogenics
51
,
49
(
2011
).
8.
L. M.
Zhang
,
J. Y.
Hu
,
Z. H.
Wu
,
E. C.
Luo
,
J. Y.
Xu
, and
T. J.
Bi
, “
A 1 kW-class multi-stage heat-driven thermoacoustic cryocooler system operating at liquefied natural gas temperature range
,”
Appl. Phys. Lett.
107
,
033905
(
2015
).
9.
P. H.
Ceperley
, “
Gain and efficiency of a short traveling wave heat engine
,”
J. Acoust. Soc. Am.
77
,
1239
(
1985
).
10.
S.
Hasegawa
,
K.
Kondo
, and
Y.
Oshinoya
, “
Experimental verification of heat transport by acoustic wave
,”
Appl. Therm. Eng.
78
,
551
(
2015
).
11.
A.
Tominaga
, “
Thermodynamic aspects of thermoacoustic theory
,”
Cryogenics
35
,
427
(
1995
).
12.
G. W.
Swift
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
(
Acoustical Society of America through the American Institute of Physics
,
Melville, New York
,
2002
).
13.
D. L.
Gardner
and
G. W.
Swift
, “
A cascade thermoacoustic engine
,”
J. Acoust. Soc. Am.
114
,
1905
(
2003
).
14.
T.
Biwa
,
R.
Komatsu
, and
T.
Yazaki
, “
Acoustical power amplification and damping by temperature gradients
,”
J. Acoust. Soc. Am.
129
,
132
(
2011
).
15.
N.
Rott
, “
Damped and thermally driven acoustic oscillations in wide and narrow tubes
,”
Z. Angew. Math. Phys.
20
,
230
(
1969
).
16.
Y.
Ueda
and
C.
Kato
, “
Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes
,”
J. Acoust. Soc. Am.
124
,
851
(
2008
).
17.
G.
Penelet
,
S.
Job
,
V.
Gusev
,
P.
Lotton
, and
M.
Bruneau
, “
Dependence of sound amplification on temperature distribution in annular thermoacoustic engines
,”
Acta Acust. Acust.
91
,
567
(
2005
).
18.
S.
Hasegawa
,
T.
Yamaguchi
, and
Y.
Oshinoya
, “
A thermoacoustic refrigerator driven by a low temperature differential, high-efficiency multistage thermoacoustic engine
,”
Appl. Therm. Eng.
58
,
394
(
2013
).
19.
T.
Holzinger
,
T.
Emmerti
, and
W.
Polifke
, “
Optimizing thermoacoustic regenerators for maximum amplification of acoustic power
,”
J. Acoust. Soc. Am.
136
,
2432
(
2014
).
20.
T.
Biwa
,
Y.
Tashiro
,
U.
Mizutani
,
M.
Kozuka
, and
T.
Yazaki
, “
Experimental demonstration of thermoacoustic energy conversion in a resonator
,”
Phys. Rev. E
69
,
066304
(
2004
).
21.
A.
Piccolo
and
G.
Pistone
, “
Estimation of heat transfer coefficients in oscillating flows: The thermoacoustic case
,”
Int. J. Heat. Mass. Transer
49
,
1631
(
2006
).
22.
H.
Hatori
,
T.
Biwa
, and
T.
Yazaki
, “
How to build a loaded thermoacoustic engine
,”
J. Appl. Phys.
111
,
074905
(
2012
).
23.
W.
Dai
,
E.
Luo
,
X.
Wang
, and
Z.
Wu
, “
Impedance match for Stirling type cryocoolers
,”
Cryogenics
51
,
168
(
2011
).
24.
A. M.
Fusco
,
W. C.
Ward
, and
G. W.
Swift
, “
Two-sensor power measurements in lossy ducts
,”
J. Acoust. Soc. Am.
91
,
2229
(
1992
).
25.
T.
Biwa
,
Y.
Tashiro
,
H.
Nomura
,
Y.
Ueda
, and
T.
Yazaki
, “
Experimental verification of a two-sensor acoustic intensity measurement in lossy ducts
,”
J. Acoust. Soc. Am.
124
,
1584
(
2008
).
You do not currently have access to this content.