We investigate the surface recombination velocity Sp at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1–14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953–959 (1992); 35, 961–967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598–1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684–3695 (1998)]. The results show an increased Sp at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1–6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30–36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181–1183 (1993)].

1.
A.
Richter
,
S. W.
Glunz
,
F.
Werner
,
J.
Schmidt
, and
A.
Cuevas
, “
Improved quantitative description of Auger recombination in crystalline silicon
,”
Phys. Rev. B
86
,
165202
(
2012
).
2.
D. B. M.
Klaassen
, “
A unified mobility model for device simulation - I. Model equations and concentration dependence
,”
Solid-State Electron.
35
,
953
959
(
1992
).
3.
D. B. M.
Klaassen
, “
A unified mobility model for device simulation - II. Temperature dependence of carrier mobility and lifetime
,”
Solid State Electron.
35
,
961
967
(
1992
).
4.
P. P.
Altermatt
,
A.
Schenk
,
F.
Geelhaar
, and
G.
Heiser
, “
Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing
,”
J. Appl. Phys.
93
,
1598
1604
(
2003
).
5.
A.
Schenk
, “
Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation
,”
J. Appl. Phys.
84
,
3684
3695
(
1998
).
6.
K. R.
McIntosh
and
P. P.
Altermatt
, “
A freeware 1d emitter model for silicon solar cells
,” in
Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA
(
2010
), pp.
1
6
.
7.
H.
Haug
,
A.
Kimmerle
,
J.
Greulich
,
A.
Wolf
, and
E. S.
Marstein
, “
Implementation of Fermi–Dirac statistics and advanced models in PC1D for precise simulations of silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
131
,
30
36
(
2014
).
8.
Synopsys, Sentaurus TCAD, Zürich, Switzerland.
9.
A.
Cuevas
,
R.
Merchán
, and
J. C.
Ramos
, “
On the systematic analytical solutions for minority-carrier transport in nonuniform doped semiconductors: application to solar cells
,”
IEEE Trans. Electron Devices
40
,
1181
1183
(
1993
).
10.
S.
Mack
,
A.
Wolf
,
C.
Brosinsky
,
S.
Schmeisser
,
A.
Kimmerle
,
P.
Saint-Cast
,
M.
Hofmann
, and
D.
Biro
, “
Silicon surface passivation by thin thermal oxide/PECVD layer stack systems
,”
IEEE J. Photovoltaics
1
,
135
145
(
2011
).
11.
K. T.
Butler
,
J. H.
Harding
,
M. P. W. E.
Lamers
, and
A. W.
Weeber
, “
Stoichiometrically graded SiNx for improved surface passivation in high performance solar cells
,”
J. Appl. Phys.
112
,
094303
(
2012
).
12.
M.
Lamers
,
L. E.
Hintzsche
,
K. T.
Butler
,
P. E.
Vullum
,
C.-M.
Fang
,
M.
Marsman
,
G.
Jordan
,
J. H.
Harding
,
G.
Kresse
, and
A.
Weeber
, “
The interface of a-SiNx:H and Si: Linking the nano-scale structure to passivation quality
,”
Sol. Energy Mater. Sol. Cells Part A
120
,
311
316
(
2014
).
13.
J.
Seiffe
,
L.
Gautero
,
M.
Hofmann
,
J.
Rentsch
,
R.
Preu
,
S.
Weber
, and
R. A.
Eichel
, “
Surface passivation of crystalline silicon by plasma-enhanced chemical vapor deposition double layers of silicon-rich silicon oxynitride and silicon nitride
,”
J. Appl. Phys.
109
,
034105
(
2011
).
14.
M. J.
Kerr
,
J.
Schmidt
,
A.
Cuevas
, and
J. H.
Bultman
, “
Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide
,”
J. Appl. Phys.
89
,
3821
3826
(
2001
).
15.
A.
Cuevas
,
P. A.
Basore
,
G.
Giroult-Matlakowski
, and
C.
Dubois
, “
Surface recombination velocity of highly doped n-type silicon
,”
J. Appl. Phys.
80
,
3370
3375
(
1996
).
16.
R. R.
King
,
R. A.
Sinton
, and
R. M.
Swanson
, “
Studies of diffused phosphorus emitters: Saturation current, surface recombination velocity, and quantum efficiency
,”
IEEE Trans. Electron Devices
37
,
365
371
(
1990
).
17.
S. W.
Glunz
,
S.
Sterk
,
R.
Steeman
,
W.
Warta
,
J.
Knobloch
, and
W.
Wettling
, “
Emitter dark saturation currents of high-efficiency solar cells with inverted pyramids
,” in
Proceedings of the 13th European Photovoltaic Solar Energy Conference, H. S. Stephens & Associates, Bedford, UK, 1995, Nice, France
, edited by
W.
Freiesleben
,
W.
Palz
,
H. A.
Ossenbrink
, and
P.
Helm
(
1995
), pp.
409
412
.
18.
P. P.
Altermatt
,
J. O.
Schumacher
,
A.
Cuevas
,
S. W.
Glunz
,
R. R.
King
,
G.
Heiser
, and
A.
Schenk
, “
Numerical modeling of highly doped Si:P emitters based on Fermi-Dirac statistics and self-consistent material parameters
,”
J. Appl. Phys.
92
,
3187
3197
(
2002
).
19.
A.
Kimmerle
,
J.
Greulich
, and
A.
Wolf
, “
Carrier-diffusion corrected J0-analysis by QSSPC for increased consistency
,”
Sol. Energy Mater. Sol. Cells
142
,
116
122
(
2015
).
20.
A.
Moldovan
,
K.
Birmann
,
J.
Rentsch
,
M.
Zimmer
,
T.
Gitte
, and
J.
Fittkau
, “
Combined Ozone/HF/HCI based cleaning and adjusted emitter etch-back for silicon solar cells
,” in
Solid State Phenomena
(
Trans Tech Publications
,
2013
), pp.
305
309
.
21.
K. R.
McIntosh
and
L. P.
Johnson
, “
Recombination at textured silicon surfaces passivated with silicon dioxide
,”
J. Appl. Phys.
105
,
124520
(
2009
).
22.
H.
Haug
,
J.
Greulich
,
A.
Kimmerle
,
A.
Wolf
, and
E. S.
Marstein
, “
PC1Dmod 6.1 - state-of-the-art models in a well-known interface for improved simulation of Si solar cells
,”
Sol. Energy Mater. Sol. Cells
142
,
47
53
(
2015
).
23.
A.
Kimmerle
, “
Herstellung und Charakterisierung hochohmiger Emitter für Hocheffizienzsolarzellen
,” in
Fakultät für Mathematik und Physik
(
Albert Ludwigs Universität
,
Freiburg
,
2011
).
24.
A.
Kimmerle
,
A.
Wolf
,
U.
Belledin
, and
D.
Biro
, “
Modelling carrier recombination in highly phosphorus-doped industrial emitters
,”
Energy Procedia
8
,
275
281
(
2011
).
25.
A.
Kimmerle
,
R.
Woehl
,
A.
Wolf
, and
D.
Biro
, “
Simplified front surface field formation for back contacted silicon solar cells
,”
Energy Procedia
38
,
278
282
(
2013
).
26.
A.
Richter
,
J.
Benick
,
A.
Kimmerle
,
M.
Hermle
, and
S. W.
Glunz
, “
Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments
,”
J. Appl. Phys.
116
,
243501
(
2014
).
27.
A.
Armigliato
,
D.
Nobili
,
M.
Servidori
, and
S.
Solmi
, “
SiP precipitation within the doped silicon lattice, concomitant with phosphorus predeposition
,”
J. Appl. Phys.
47
,
5489
5491
(
1976
).
28.
B.
Min
,
A.
Dastgheib-Shirazi
,
P. P.
Altermatt
, and
H.
Kurz
, “
Accurate determination of the emitter saturation current density for industrial p-diffused emitters
,” in
Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands
(
2014
), pp.
463
466
.
29.
S. C.
Baker-Finch
and
K. R.
McIntosh
, “
The contribution of planes, vertices, and edges to recombination at pyramidally textured surfaces
,”
IEEE J. Photovoltaics
1
,
59
65
(
2011
).
30.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
John Wiley & Sons
,
New York
,
1981
).
You do not currently have access to this content.